Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrn3 Structured version   Visualization version   GIF version

Theorem elrn3 35806
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
elrn3 (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)

Proof of Theorem elrn3
StepHypRef Expression
1 df-rn 5625 . . 3 ran 𝐵 = dom 𝐵
21eleq2i 2823 . 2 (𝐴 ∈ ran 𝐵𝐴 ∈ dom 𝐵)
3 eldm3 35805 . 2 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
4 cnvxp 6104 . . . . . . 7 (V × {𝐴}) = ({𝐴} × V)
54ineq2i 4164 . . . . . 6 (𝐵(V × {𝐴})) = (𝐵 ∩ ({𝐴} × V))
6 cnvin 6091 . . . . . 6 (𝐵 ∩ (V × {𝐴})) = (𝐵(V × {𝐴}))
7 df-res 5626 . . . . . 6 (𝐵 ↾ {𝐴}) = (𝐵 ∩ ({𝐴} × V))
85, 6, 73eqtr4ri 2765 . . . . 5 (𝐵 ↾ {𝐴}) = (𝐵 ∩ (V × {𝐴}))
98eqeq1i 2736 . . . 4 ((𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
10 relinxp 5753 . . . . 5 Rel (𝐵 ∩ (V × {𝐴}))
11 cnveq0 6144 . . . . 5 (Rel (𝐵 ∩ (V × {𝐴})) → ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅))
1210, 11ax-mp 5 . . . 4 ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
139, 12bitr4i 278 . . 3 ((𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
1413necon3bii 2980 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)
152, 3, 143bitri 297 1 (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cin 3896  c0 4280  {csn 4573   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator