Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrn3 | Structured version Visualization version GIF version |
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.) |
Ref | Expression |
---|---|
elrn3 | ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5611 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝐴 ∈ ran 𝐵 ↔ 𝐴 ∈ dom ◡𝐵) |
3 | eldm3 33777 | . 2 ⊢ (𝐴 ∈ dom ◡𝐵 ↔ (◡𝐵 ↾ {𝐴}) ≠ ∅) | |
4 | cnvxp 6075 | . . . . . . 7 ⊢ ◡(V × {𝐴}) = ({𝐴} × V) | |
5 | 4 | ineq2i 4149 | . . . . . 6 ⊢ (◡𝐵 ∩ ◡(V × {𝐴})) = (◡𝐵 ∩ ({𝐴} × V)) |
6 | cnvin 6063 | . . . . . 6 ⊢ ◡(𝐵 ∩ (V × {𝐴})) = (◡𝐵 ∩ ◡(V × {𝐴})) | |
7 | df-res 5612 | . . . . . 6 ⊢ (◡𝐵 ↾ {𝐴}) = (◡𝐵 ∩ ({𝐴} × V)) | |
8 | 5, 6, 7 | 3eqtr4ri 2775 | . . . . 5 ⊢ (◡𝐵 ↾ {𝐴}) = ◡(𝐵 ∩ (V × {𝐴})) |
9 | 8 | eqeq1i 2741 | . . . 4 ⊢ ((◡𝐵 ↾ {𝐴}) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅) |
10 | relinxp 5736 | . . . . 5 ⊢ Rel (𝐵 ∩ (V × {𝐴})) | |
11 | cnveq0 6115 | . . . . 5 ⊢ (Rel (𝐵 ∩ (V × {𝐴})) → ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅)) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅) |
13 | 9, 12 | bitr4i 278 | . . 3 ⊢ ((◡𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅) |
14 | 13 | necon3bii 2994 | . 2 ⊢ ((◡𝐵 ↾ {𝐴}) ≠ ∅ ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
15 | 2, 3, 14 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 Vcvv 3437 ∩ cin 3891 ∅c0 4262 {csn 4565 × cxp 5598 ◡ccnv 5599 dom cdm 5600 ran crn 5601 ↾ cres 5602 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |