Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvref5 Structured version   Visualization version   GIF version

Theorem cnvref5 36564
Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.)
Assertion
Ref Expression
cnvref5 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem cnvref5
StepHypRef Expression
1 ssrel3 5708 . 2 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 I 𝑦)))
2 ideqg 5773 . . . . 5 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3443 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
43imbi2i 336 . . 3 ((𝑥𝑅𝑦𝑥 I 𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦))
542albii 1820 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑥 I 𝑦) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦))
61, 5bitrdi 287 1 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  Vcvv 3437  wss 3892   class class class wbr 5081   I cid 5499  Rel wrel 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607
This theorem is referenced by:  dfcnvrefrel5  36747
  Copyright terms: Public domain W3C validator