Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvref5 Structured version   Visualization version   GIF version

Theorem cnvref5 37220
Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.)
Assertion
Ref Expression
cnvref5 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem cnvref5
StepHypRef Expression
1 ssrel3 5787 . 2 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 I 𝑦)))
2 ideqg 5852 . . . . 5 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3481 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
43imbi2i 336 . . 3 ((𝑥𝑅𝑦𝑥 I 𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦))
542albii 1823 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑥 I 𝑦) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦))
61, 5bitrdi 287 1 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  Vcvv 3475  wss 3949   class class class wbr 5149   I cid 5574  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684
This theorem is referenced by:  dfcnvrefrel5  37403
  Copyright terms: Public domain W3C validator