Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvref5 Structured version   Visualization version   GIF version

Theorem cnvref5 38382
Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.)
Assertion
Ref Expression
cnvref5 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem cnvref5
StepHypRef Expression
1 ssrel3 5725 . 2 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 I 𝑦)))
2 ideqg 5790 . . . . 5 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3441 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
43imbi2i 336 . . 3 ((𝑥𝑅𝑦𝑥 I 𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦))
542albii 1821 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑥 I 𝑦) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦))
61, 5bitrdi 287 1 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  Vcvv 3436  wss 3897   class class class wbr 5089   I cid 5508  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621
This theorem is referenced by:  dfcnvrefrel5  38624
  Copyright terms: Public domain W3C validator