![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvref5 | Structured version Visualization version GIF version |
Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.) |
Ref | Expression |
---|---|
cnvref5 | ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 5799 | . 2 ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 I 𝑦))) | |
2 | ideqg 5865 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3483 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | 3 | imbi2i 336 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
5 | 4 | 2albii 1817 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
6 | 1, 5 | bitrdi 287 | 1 ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 I cid 5582 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 |
This theorem is referenced by: dfcnvrefrel5 38515 |
Copyright terms: Public domain | W3C validator |