![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvref5 | Structured version Visualization version GIF version |
Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.) |
Ref | Expression |
---|---|
cnvref5 | ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 5787 | . 2 ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 I 𝑦))) | |
2 | ideqg 5852 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3481 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | 3 | imbi2i 336 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
5 | 4 | 2albii 1823 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
6 | 1, 5 | bitrdi 287 | 1 ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 Vcvv 3475 ⊆ wss 3949 class class class wbr 5149 I cid 5574 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 |
This theorem is referenced by: dfcnvrefrel5 37403 |
Copyright terms: Public domain | W3C validator |