Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvref5 | Structured version Visualization version GIF version |
Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.) |
Ref | Expression |
---|---|
cnvref5 | ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 5708 | . 2 ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 I 𝑦))) | |
2 | ideqg 5773 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3443 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | 3 | imbi2i 336 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
5 | 4 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 I 𝑦) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
6 | 1, 5 | bitrdi 287 | 1 ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Vcvv 3437 ⊆ wss 3892 class class class wbr 5081 I cid 5499 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 |
This theorem is referenced by: dfcnvrefrel5 36747 |
Copyright terms: Public domain | W3C validator |