Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cover2g Structured version   Visualization version   GIF version

Theorem cover2g 35800
Description: Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 21-Jun-2010.)
Hypothesis
Ref Expression
cover2g.1 𝐴 = 𝐵
Assertion
Ref Expression
cover2g (𝐵𝐶 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
Distinct variable groups:   𝜑,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐴,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem cover2g
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 unieq 4847 . . . 4 (𝑏 = 𝐵 𝑏 = 𝐵)
2 cover2g.1 . . . 4 𝐴 = 𝐵
31, 2eqtr4di 2797 . . 3 (𝑏 = 𝐵 𝑏 = 𝐴)
4 rexeq 3334 . . 3 (𝑏 = 𝐵 → (∃𝑦𝑏 (𝑥𝑦𝜑) ↔ ∃𝑦𝐵 (𝑥𝑦𝜑)))
53, 4raleqbidv 3327 . 2 (𝑏 = 𝐵 → (∀𝑥 𝑏𝑦𝑏 (𝑥𝑦𝜑) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑)))
6 pweq 4546 . . 3 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
73eqeq2d 2749 . . . 4 (𝑏 = 𝐵 → ( 𝑧 = 𝑏 𝑧 = 𝐴))
87anbi1d 629 . . 3 (𝑏 = 𝐵 → (( 𝑧 = 𝑏 ∧ ∀𝑦𝑧 𝜑) ↔ ( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
96, 8rexeqbidv 3328 . 2 (𝑏 = 𝐵 → (∃𝑧 ∈ 𝒫 𝑏( 𝑧 = 𝑏 ∧ ∀𝑦𝑧 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
10 vex 3426 . . 3 𝑏 ∈ V
11 eqid 2738 . . 3 𝑏 = 𝑏
1210, 11cover2 35799 . 2 (∀𝑥 𝑏𝑦𝑏 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝑏( 𝑧 = 𝑏 ∧ ∀𝑦𝑧 𝜑))
135, 9, 12vtoclbg 3497 1 (𝐵𝐶 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  𝒫 cpw 4530   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-uni 4837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator