Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cover2g | Structured version Visualization version GIF version |
Description: Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 21-Jun-2010.) |
Ref | Expression |
---|---|
cover2g.1 | ⊢ 𝐴 = ∪ 𝐵 |
Ref | Expression |
---|---|
cover2g | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4847 | . . . 4 ⊢ (𝑏 = 𝐵 → ∪ 𝑏 = ∪ 𝐵) | |
2 | cover2g.1 | . . . 4 ⊢ 𝐴 = ∪ 𝐵 | |
3 | 1, 2 | eqtr4di 2797 | . . 3 ⊢ (𝑏 = 𝐵 → ∪ 𝑏 = 𝐴) |
4 | rexeq 3334 | . . 3 ⊢ (𝑏 = 𝐵 → (∃𝑦 ∈ 𝑏 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑))) | |
5 | 3, 4 | raleqbidv 3327 | . 2 ⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ ∪ 𝑏∃𝑦 ∈ 𝑏 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑))) |
6 | pweq 4546 | . . 3 ⊢ (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵) | |
7 | 3 | eqeq2d 2749 | . . . 4 ⊢ (𝑏 = 𝐵 → (∪ 𝑧 = ∪ 𝑏 ↔ ∪ 𝑧 = 𝐴)) |
8 | 7 | anbi1d 629 | . . 3 ⊢ (𝑏 = 𝐵 → ((∪ 𝑧 = ∪ 𝑏 ∧ ∀𝑦 ∈ 𝑧 𝜑) ↔ (∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) |
9 | 6, 8 | rexeqbidv 3328 | . 2 ⊢ (𝑏 = 𝐵 → (∃𝑧 ∈ 𝒫 𝑏(∪ 𝑧 = ∪ 𝑏 ∧ ∀𝑦 ∈ 𝑧 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) |
10 | vex 3426 | . . 3 ⊢ 𝑏 ∈ V | |
11 | eqid 2738 | . . 3 ⊢ ∪ 𝑏 = ∪ 𝑏 | |
12 | 10, 11 | cover2 35799 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑏∃𝑦 ∈ 𝑏 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝑏(∪ 𝑧 = ∪ 𝑏 ∧ ∀𝑦 ∈ 𝑧 𝜑)) |
13 | 5, 9, 12 | vtoclbg 3497 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |