Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cover2g Structured version   Visualization version   GIF version

Theorem cover2g 34410
Description: Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 21-Jun-2010.)
Hypothesis
Ref Expression
cover2g.1 𝐴 = 𝐵
Assertion
Ref Expression
cover2g (𝐵𝐶 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
Distinct variable groups:   𝜑,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐴,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem cover2g
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 unieq 4718 . . . 4 (𝑏 = 𝐵 𝑏 = 𝐵)
2 cover2g.1 . . . 4 𝐴 = 𝐵
31, 2syl6eqr 2829 . . 3 (𝑏 = 𝐵 𝑏 = 𝐴)
4 rexeq 3343 . . 3 (𝑏 = 𝐵 → (∃𝑦𝑏 (𝑥𝑦𝜑) ↔ ∃𝑦𝐵 (𝑥𝑦𝜑)))
53, 4raleqbidv 3338 . 2 (𝑏 = 𝐵 → (∀𝑥 𝑏𝑦𝑏 (𝑥𝑦𝜑) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑)))
6 pweq 4423 . . 3 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
73eqeq2d 2785 . . . 4 (𝑏 = 𝐵 → ( 𝑧 = 𝑏 𝑧 = 𝐴))
87anbi1d 620 . . 3 (𝑏 = 𝐵 → (( 𝑧 = 𝑏 ∧ ∀𝑦𝑧 𝜑) ↔ ( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
96, 8rexeqbidv 3339 . 2 (𝑏 = 𝐵 → (∃𝑧 ∈ 𝒫 𝑏( 𝑧 = 𝑏 ∧ ∀𝑦𝑧 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
10 vex 3415 . . 3 𝑏 ∈ V
11 eqid 2775 . . 3 𝑏 = 𝑏
1210, 11cover2 34409 . 2 (∀𝑥 𝑏𝑦𝑏 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝑏( 𝑧 = 𝑏 ∧ ∀𝑦𝑧 𝜑))
135, 9, 12vtoclbg 3484 1 (𝐵𝐶 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wral 3085  wrex 3086  𝒫 cpw 4420   cuni 4710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-ext 2747  ax-sep 5058
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ral 3090  df-rex 3091  df-rab 3094  df-v 3414  df-in 3835  df-ss 3842  df-pw 4422  df-uni 4711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator