| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ledi | Structured version Visualization version GIF version | ||
| Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ledi | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∩ (𝐵 ∨ℋ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4162 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐵)) | |
| 2 | ineq1 4162 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ∩ 𝐶) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶)) | |
| 3 | 1, 2 | oveq12d 7373 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶)) = ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐵) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶))) |
| 4 | ineq1 4162 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (𝐵 ∨ℋ 𝐶))) | |
| 5 | 3, 4 | sseq12d 3964 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐵) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶)) ⊆ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (𝐵 ∨ℋ 𝐶)))) |
| 6 | ineq2 4163 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐵) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ))) | |
| 7 | 6 | oveq1d 7370 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐵) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶)) = ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ)) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶))) |
| 8 | oveq1 7362 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) → (𝐵 ∨ℋ 𝐶) = (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ 𝐶)) | |
| 9 | 8 | ineq2d 4169 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (𝐵 ∨ℋ 𝐶)) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ 𝐶))) |
| 10 | 7, 9 | sseq12d 3964 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) → (((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐵) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶)) ⊆ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (𝐵 ∨ℋ 𝐶)) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ)) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶)) ⊆ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ 𝐶)))) |
| 11 | ineq2 4163 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ Cℋ , 𝐶, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ))) | |
| 12 | 11 | oveq2d 7371 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ Cℋ , 𝐶, 0ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ)) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶)) = ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ)) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ)))) |
| 13 | oveq2 7363 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ Cℋ , 𝐶, 0ℋ) → (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ 𝐶) = (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ))) | |
| 14 | 13 | ineq2d 4169 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ Cℋ , 𝐶, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ 𝐶)) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ)))) |
| 15 | 12, 14 | sseq12d 3964 | . 2 ⊢ (𝐶 = if(𝐶 ∈ Cℋ , 𝐶, 0ℋ) → (((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ)) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ 𝐶)) ⊆ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ 𝐶)) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ)) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ))) ⊆ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ))))) |
| 16 | h0elch 31256 | . . . 4 ⊢ 0ℋ ∈ Cℋ | |
| 17 | 16 | elimel 4546 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
| 18 | 16 | elimel 4546 | . . 3 ⊢ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∈ Cℋ |
| 19 | 16 | elimel 4546 | . . 3 ⊢ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ) ∈ Cℋ |
| 20 | 17, 18, 19 | ledii 31537 | . 2 ⊢ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐵 ∈ Cℋ , 𝐵, 0ℋ)) ∨ℋ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ))) ⊆ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∩ (if(𝐵 ∈ Cℋ , 𝐵, 0ℋ) ∨ℋ if(𝐶 ∈ Cℋ , 𝐶, 0ℋ))) |
| 21 | 5, 10, 15, 20 | dedth3h 4537 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∩ (𝐵 ∨ℋ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 ifcif 4476 (class class class)co 7355 Cℋ cch 30930 ∨ℋ chj 30934 0ℋc0h 30936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cc 10337 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 ax-hilex 31000 ax-hfvadd 31001 ax-hvcom 31002 ax-hvass 31003 ax-hv0cl 31004 ax-hvaddid 31005 ax-hfvmul 31006 ax-hvmulid 31007 ax-hvmulass 31008 ax-hvdistr1 31009 ax-hvdistr2 31010 ax-hvmul0 31011 ax-hfi 31080 ax-his1 31083 ax-his2 31084 ax-his3 31085 ax-his4 31086 ax-hcompl 31203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-acn 9846 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-rlim 15403 df-sum 15601 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-cn 23162 df-cnp 23163 df-lm 23164 df-haus 23250 df-tx 23497 df-hmeo 23690 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-xms 24255 df-ms 24256 df-tms 24257 df-cfil 25202 df-cau 25203 df-cmet 25204 df-grpo 30494 df-gid 30495 df-ginv 30496 df-gdiv 30497 df-ablo 30546 df-vc 30560 df-nv 30593 df-va 30596 df-ba 30597 df-sm 30598 df-0v 30599 df-vs 30600 df-nmcv 30601 df-ims 30602 df-dip 30702 df-ssp 30723 df-ph 30814 df-cbn 30864 df-hnorm 30969 df-hba 30970 df-hvsub 30972 df-hlim 30973 df-hcau 30974 df-sh 31208 df-ch 31222 df-oc 31253 df-ch0 31254 df-shs 31309 df-chj 31311 |
| This theorem is referenced by: fh1 31619 fh2 31620 |
| Copyright terms: Public domain | W3C validator |