![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubadd | Structured version Visualization version GIF version |
Description: Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubadd | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7408 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) | |
2 | 1 | eqeq1d 2726 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶)) |
3 | eqeq2 2736 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐵 +ℎ 𝐶) = 𝐴 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
4 | 2, 3 | bibi12d 345 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
5 | oveq2 7409 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | eqeq1d 2726 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶)) |
7 | oveq1 7408 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 +ℎ 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶)) | |
8 | 7 | eqeq1d 2726 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) |
9 | 6, 8 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
10 | eqeq2 2736 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
11 | oveq2 7409 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
12 | 11 | eqeq1d 2726 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) |
13 | 10, 12 | bibi12d 345 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
14 | ifhvhv0 30699 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
15 | ifhvhv0 30699 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
16 | ifhvhv0 30699 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
17 | 14, 15, 16 | hvsubaddi 30743 | . 2 ⊢ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) |
18 | 4, 9, 13, 17 | dedth3h 4580 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ifcif 4520 (class class class)co 7401 ℋchba 30596 +ℎ cva 30597 0ℎc0v 30601 −ℎ cmv 30602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-hfvadd 30677 ax-hvcom 30678 ax-hvass 30679 ax-hv0cl 30680 ax-hvaddid 30681 ax-hfvmul 30682 ax-hvmulid 30683 ax-hvdistr2 30686 ax-hvmul0 30687 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-hvsub 30648 |
This theorem is referenced by: shmodsi 31066 pjop 31104 pjpo 31105 chscllem2 31315 pjo 31348 hodsi 31452 pjimai 31853 superpos 32031 sumdmdii 32092 sumdmdlem 32095 |
Copyright terms: Public domain | W3C validator |