HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubadd Structured version   Visualization version   GIF version

Theorem hvsubadd 28645
Description: Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubadd ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))

Proof of Theorem hvsubadd
StepHypRef Expression
1 oveq1 6981 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
21eqeq1d 2774 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶))
3 eqeq2 2783 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)))
42, 3bibi12d 338 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0))))
5 oveq2 6982 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
65eqeq1d 2774 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶))
7 oveq1 6981 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 + 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶))
87eqeq1d 2774 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)))
96, 8bibi12d 338 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0))))
10 eqeq2 2783 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = if(𝐶 ∈ ℋ, 𝐶, 0)))
11 oveq2 6982 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)))
1211eqeq1d 2774 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) = if(𝐴 ∈ ℋ, 𝐴, 0)))
1310, 12bibi12d 338 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = if(𝐶 ∈ ℋ, 𝐶, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) = if(𝐴 ∈ ℋ, 𝐴, 0))))
14 ifhvhv0 28590 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
15 ifhvhv0 28590 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
16 ifhvhv0 28590 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
1714, 15, 16hvsubaddi 28634 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = if(𝐶 ∈ ℋ, 𝐶, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) = if(𝐴 ∈ ℋ, 𝐴, 0))
184, 9, 13, 17dedth3h 4402 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1068   = wceq 1507  wcel 2050  ifcif 4344  (class class class)co 6974  chba 28487   + cva 28488  0c0v 28492   cmv 28493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-hfvadd 28568  ax-hvcom 28569  ax-hvass 28570  ax-hv0cl 28571  ax-hvaddid 28572  ax-hfvmul 28573  ax-hvmulid 28574  ax-hvdistr2 28577  ax-hvmul0 28578
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-ltxr 10477  df-sub 10670  df-neg 10671  df-hvsub 28539
This theorem is referenced by:  shmodsi  28959  pjop  28997  pjpo  28998  chscllem2  29208  pjo  29241  hodsi  29345  pjimai  29746  superpos  29924  sumdmdii  29985  sumdmdlem  29988
  Copyright terms: Public domain W3C validator