| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubadd | Structured version Visualization version GIF version | ||
| Description: Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubadd | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) | |
| 2 | 1 | eqeq1d 2735 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶)) |
| 3 | eqeq2 2745 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐵 +ℎ 𝐶) = 𝐴 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
| 4 | 2, 3 | bibi12d 345 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
| 5 | oveq2 7360 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 6 | 5 | eqeq1d 2735 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶)) |
| 7 | oveq1 7359 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 +ℎ 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶)) | |
| 8 | 7 | eqeq1d 2735 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) |
| 9 | 6, 8 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
| 10 | eqeq2 2745 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
| 11 | oveq2 7360 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
| 12 | 11 | eqeq1d 2735 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) |
| 13 | 10, 12 | bibi12d 345 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
| 14 | ifhvhv0 31004 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
| 15 | ifhvhv0 31004 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
| 16 | ifhvhv0 31004 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
| 17 | 14, 15, 16 | hvsubaddi 31048 | . 2 ⊢ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) |
| 18 | 4, 9, 13, 17 | dedth3h 4535 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ifcif 4474 (class class class)co 7352 ℋchba 30901 +ℎ cva 30902 0ℎc0v 30906 −ℎ cmv 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-hfvadd 30982 ax-hvcom 30983 ax-hvass 30984 ax-hv0cl 30985 ax-hvaddid 30986 ax-hfvmul 30987 ax-hvmulid 30988 ax-hvdistr2 30991 ax-hvmul0 30992 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-neg 11354 df-hvsub 30953 |
| This theorem is referenced by: shmodsi 31371 pjop 31409 pjpo 31410 chscllem2 31620 pjo 31653 hodsi 31757 pjimai 32158 superpos 32336 sumdmdii 32397 sumdmdlem 32400 |
| Copyright terms: Public domain | W3C validator |