Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubadd | Structured version Visualization version GIF version |
Description: Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubadd | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7275 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) | |
2 | 1 | eqeq1d 2741 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶)) |
3 | eqeq2 2751 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐵 +ℎ 𝐶) = 𝐴 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
4 | 2, 3 | bibi12d 345 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
5 | oveq2 7276 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | eqeq1d 2741 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶)) |
7 | oveq1 7275 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 +ℎ 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶)) | |
8 | 7 | eqeq1d 2741 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) |
9 | 6, 8 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
10 | eqeq2 2751 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
11 | oveq2 7276 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
12 | 11 | eqeq1d 2741 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) |
13 | 10, 12 | bibi12d 345 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
14 | ifhvhv0 29363 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
15 | ifhvhv0 29363 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
16 | ifhvhv0 29363 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
17 | 14, 15, 16 | hvsubaddi 29407 | . 2 ⊢ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) |
18 | 4, 9, 13, 17 | dedth3h 4524 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ifcif 4464 (class class class)co 7268 ℋchba 29260 +ℎ cva 29261 0ℎc0v 29265 −ℎ cmv 29266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-hfvadd 29341 ax-hvcom 29342 ax-hvass 29343 ax-hv0cl 29344 ax-hvaddid 29345 ax-hfvmul 29346 ax-hvmulid 29347 ax-hvdistr2 29350 ax-hvmul0 29351 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sub 11190 df-neg 11191 df-hvsub 29312 |
This theorem is referenced by: shmodsi 29730 pjop 29768 pjpo 29769 chscllem2 29979 pjo 30012 hodsi 30116 pjimai 30517 superpos 30695 sumdmdii 30756 sumdmdlem 30759 |
Copyright terms: Public domain | W3C validator |