HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsii Structured version   Visualization version   GIF version

Theorem omlsii 31422
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsi.1 𝐴C
omlsi.2 𝐵S
omlsi.3 𝐴𝐵
omlsi.4 (𝐵 ∩ (⊥‘𝐴)) = 0
Assertion
Ref Expression
omlsii 𝐴 = 𝐵

Proof of Theorem omlsii
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omlsi.3 . 2 𝐴𝐵
2 omlsi.1 . . . . 5 𝐴C
3 omlsi.2 . . . . . 6 𝐵S
43sheli 31233 . . . . 5 (𝑥𝐵𝑥 ∈ ℋ)
52, 4pjhthlem2 31411 . . . 4 (𝑥𝐵 → ∃𝑦𝐴𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧))
6 eqeq1 2741 . . . . . . . . 9 (𝑥 = if(𝑥𝐵, 𝑥, 0) → (𝑥 = (𝑦 + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧)))
7 eleq1 2829 . . . . . . . . 9 (𝑥 = if(𝑥𝐵, 𝑥, 0) → (𝑥𝐴 ↔ if(𝑥𝐵, 𝑥, 0) ∈ 𝐴))
86, 7imbi12d 344 . . . . . . . 8 (𝑥 = if(𝑥𝐵, 𝑥, 0) → ((𝑥 = (𝑦 + 𝑧) → 𝑥𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
9 oveq1 7438 . . . . . . . . . 10 (𝑦 = if(𝑦𝐴, 𝑦, 0) → (𝑦 + 𝑧) = (if(𝑦𝐴, 𝑦, 0) + 𝑧))
109eqeq2d 2748 . . . . . . . . 9 (𝑦 = if(𝑦𝐴, 𝑦, 0) → (if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧)))
1110imbi1d 341 . . . . . . . 8 (𝑦 = if(𝑦𝐴, 𝑦, 0) → ((if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
12 oveq2 7439 . . . . . . . . . 10 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → (if(𝑦𝐴, 𝑦, 0) + 𝑧) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)))
1312eqeq2d 2748 . . . . . . . . 9 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0))))
1413imbi1d 341 . . . . . . . 8 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → ((if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
152chshii 31246 . . . . . . . . 9 𝐴S
16 omlsi.4 . . . . . . . . 9 (𝐵 ∩ (⊥‘𝐴)) = 0
17 sh0 31235 . . . . . . . . . . 11 (𝐵S → 0𝐵)
183, 17ax-mp 5 . . . . . . . . . 10 0𝐵
1918elimel 4595 . . . . . . . . 9 if(𝑥𝐵, 𝑥, 0) ∈ 𝐵
20 ch0 31247 . . . . . . . . . . 11 (𝐴C → 0𝐴)
212, 20ax-mp 5 . . . . . . . . . 10 0𝐴
2221elimel 4595 . . . . . . . . 9 if(𝑦𝐴, 𝑦, 0) ∈ 𝐴
23 shocsh 31303 . . . . . . . . . . . 12 (𝐴S → (⊥‘𝐴) ∈ S )
2415, 23ax-mp 5 . . . . . . . . . . 11 (⊥‘𝐴) ∈ S
25 sh0 31235 . . . . . . . . . . 11 ((⊥‘𝐴) ∈ S → 0 ∈ (⊥‘𝐴))
2624, 25ax-mp 5 . . . . . . . . . 10 0 ∈ (⊥‘𝐴)
2726elimel 4595 . . . . . . . . 9 if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) ∈ (⊥‘𝐴)
2815, 3, 1, 16, 19, 22, 27omlsilem 31421 . . . . . . . 8 (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)
298, 11, 14, 28dedth3h 4586 . . . . . . 7 ((𝑥𝐵𝑦𝐴𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
30293expia 1122 . . . . . 6 ((𝑥𝐵𝑦𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴)))
3130rexlimdv 3153 . . . . 5 ((𝑥𝐵𝑦𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
3231rexlimdva 3155 . . . 4 (𝑥𝐵 → (∃𝑦𝐴𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
335, 32mpd 15 . . 3 (𝑥𝐵𝑥𝐴)
3433ssriv 3987 . 2 𝐵𝐴
351, 34eqssi 4000 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  cin 3950  wss 3951  ifcif 4525  cfv 6561  (class class class)co 7431   + cva 30939  0c0v 30943   S csh 30947   C cch 30948  cort 30949  0c0h 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lm 23237  df-haus 23323  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272
This theorem is referenced by:  omlsi  31423  ococi  31424  qlaxr3i  31655  hatomistici  32381
  Copyright terms: Public domain W3C validator