![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > omlsii | Structured version Visualization version GIF version |
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omlsi.1 | ⊢ 𝐴 ∈ Cℋ |
omlsi.2 | ⊢ 𝐵 ∈ Sℋ |
omlsi.3 | ⊢ 𝐴 ⊆ 𝐵 |
omlsi.4 | ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ |
Ref | Expression |
---|---|
omlsii | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlsi.3 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | omlsi.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
3 | omlsi.2 | . . . . . 6 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | sheli 31243 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
5 | 2, 4 | pjhthlem2 31421 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧)) |
6 | eqeq1 2739 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧))) | |
7 | eleq1 2827 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 ∈ 𝐴 ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴)) | |
8 | 6, 7 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → ((𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
9 | oveq1 7438 | . . . . . . . . . 10 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (𝑦 +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧)) | |
10 | 9 | eqeq2d 2746 | . . . . . . . . 9 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧))) |
11 | 10 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
12 | oveq2 7439 | . . . . . . . . . 10 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ))) | |
13 | 12 | eqeq2d 2746 | . . . . . . . . 9 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)))) |
14 | 13 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
15 | 2 | chshii 31256 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ |
16 | omlsi.4 | . . . . . . . . 9 ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ | |
17 | sh0 31245 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐵 |
19 | 18 | elimel 4600 | . . . . . . . . 9 ⊢ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐵 |
20 | ch0 31257 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 0ℎ ∈ 𝐴) | |
21 | 2, 20 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐴 |
22 | 21 | elimel 4600 | . . . . . . . . 9 ⊢ if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) ∈ 𝐴 |
23 | shocsh 31313 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
24 | 15, 23 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (⊥‘𝐴) ∈ Sℋ |
25 | sh0 31245 | . . . . . . . . . . 11 ⊢ ((⊥‘𝐴) ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ (⊥‘𝐴) |
27 | 26 | elimel 4600 | . . . . . . . . 9 ⊢ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) ∈ (⊥‘𝐴) |
28 | 15, 3, 1, 16, 19, 22, 27 | omlsilem 31431 | . . . . . . . 8 ⊢ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) |
29 | 8, 11, 14, 28 | dedth3h 4591 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
30 | 29 | 3expia 1120 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴))) |
31 | 30 | rexlimdv 3151 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
32 | 31 | rexlimdva 3153 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
33 | 5, 32 | mpd 15 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) |
34 | 33 | ssriv 3999 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
35 | 1, 34 | eqssi 4012 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ∩ cin 3962 ⊆ wss 3963 ifcif 4531 ‘cfv 6563 (class class class)co 7431 +ℎ cva 30949 0ℎc0v 30953 Sℋ csh 30957 Cℋ cch 30958 ⊥cort 30959 0ℋc0h 30964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvmulass 31036 ax-hvdistr1 31037 ax-hvdistr2 31038 ax-hvmul0 31039 ax-hfi 31108 ax-his1 31111 ax-his2 31112 ax-his3 31113 ax-his4 31114 ax-hcompl 31231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ico 13390 df-icc 13391 df-fz 13545 df-fl 13829 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-rest 17469 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-top 22916 df-topon 22933 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lm 23253 df-haus 23339 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-cfil 25303 df-cau 25304 df-cmet 25305 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 df-ssp 30751 df-ph 30842 df-cbn 30892 df-hnorm 30997 df-hba 30998 df-hvsub 31000 df-hlim 31001 df-hcau 31002 df-sh 31236 df-ch 31250 df-oc 31281 df-ch0 31282 |
This theorem is referenced by: omlsi 31433 ococi 31434 qlaxr3i 31665 hatomistici 32391 |
Copyright terms: Public domain | W3C validator |