![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > omlsii | Structured version Visualization version GIF version |
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omlsi.1 | ⊢ 𝐴 ∈ Cℋ |
omlsi.2 | ⊢ 𝐵 ∈ Sℋ |
omlsi.3 | ⊢ 𝐴 ⊆ 𝐵 |
omlsi.4 | ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ |
Ref | Expression |
---|---|
omlsii | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlsi.3 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | omlsi.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
3 | omlsi.2 | . . . . . 6 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | sheli 30900 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
5 | 2, 4 | pjhthlem2 31078 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧)) |
6 | eqeq1 2735 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧))) | |
7 | eleq1 2820 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 ∈ 𝐴 ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴)) | |
8 | 6, 7 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → ((𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
9 | oveq1 7419 | . . . . . . . . . 10 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (𝑦 +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧)) | |
10 | 9 | eqeq2d 2742 | . . . . . . . . 9 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧))) |
11 | 10 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
12 | oveq2 7420 | . . . . . . . . . 10 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ))) | |
13 | 12 | eqeq2d 2742 | . . . . . . . . 9 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)))) |
14 | 13 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
15 | 2 | chshii 30913 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ |
16 | omlsi.4 | . . . . . . . . 9 ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ | |
17 | sh0 30902 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐵 |
19 | 18 | elimel 4597 | . . . . . . . . 9 ⊢ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐵 |
20 | ch0 30914 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 0ℎ ∈ 𝐴) | |
21 | 2, 20 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐴 |
22 | 21 | elimel 4597 | . . . . . . . . 9 ⊢ if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) ∈ 𝐴 |
23 | shocsh 30970 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
24 | 15, 23 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (⊥‘𝐴) ∈ Sℋ |
25 | sh0 30902 | . . . . . . . . . . 11 ⊢ ((⊥‘𝐴) ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ (⊥‘𝐴) |
27 | 26 | elimel 4597 | . . . . . . . . 9 ⊢ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) ∈ (⊥‘𝐴) |
28 | 15, 3, 1, 16, 19, 22, 27 | omlsilem 31088 | . . . . . . . 8 ⊢ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) |
29 | 8, 11, 14, 28 | dedth3h 4588 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
30 | 29 | 3expia 1120 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴))) |
31 | 30 | rexlimdv 3152 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
32 | 31 | rexlimdva 3154 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
33 | 5, 32 | mpd 15 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) |
34 | 33 | ssriv 3986 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
35 | 1, 34 | eqssi 3998 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∩ cin 3947 ⊆ wss 3948 ifcif 4528 ‘cfv 6543 (class class class)co 7412 +ℎ cva 30606 0ℎc0v 30610 Sℋ csh 30614 Cℋ cch 30615 ⊥cort 30616 0ℋc0h 30621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cc 10436 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 ax-hilex 30685 ax-hfvadd 30686 ax-hvcom 30687 ax-hvass 30688 ax-hv0cl 30689 ax-hvaddid 30690 ax-hfvmul 30691 ax-hvmulid 30692 ax-hvmulass 30693 ax-hvdistr1 30694 ax-hvdistr2 30695 ax-hvmul0 30696 ax-hfi 30765 ax-his1 30768 ax-his2 30769 ax-his3 30770 ax-his4 30771 ax-hcompl 30888 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-omul 8477 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-acn 9943 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ico 13337 df-icc 13338 df-fz 13492 df-fl 13764 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-rest 17375 df-topgen 17396 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-fbas 21230 df-fg 21231 df-top 22716 df-topon 22733 df-bases 22769 df-cld 22843 df-ntr 22844 df-cls 22845 df-nei 22922 df-lm 23053 df-haus 23139 df-fil 23670 df-fm 23762 df-flim 23763 df-flf 23764 df-cfil 25103 df-cau 25104 df-cmet 25105 df-grpo 30179 df-gid 30180 df-ginv 30181 df-gdiv 30182 df-ablo 30231 df-vc 30245 df-nv 30278 df-va 30281 df-ba 30282 df-sm 30283 df-0v 30284 df-vs 30285 df-nmcv 30286 df-ims 30287 df-ssp 30408 df-ph 30499 df-cbn 30549 df-hnorm 30654 df-hba 30655 df-hvsub 30657 df-hlim 30658 df-hcau 30659 df-sh 30893 df-ch 30907 df-oc 30938 df-ch0 30939 |
This theorem is referenced by: omlsi 31090 ococi 31091 qlaxr3i 31322 hatomistici 32048 |
Copyright terms: Public domain | W3C validator |