| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > omlsii | Structured version Visualization version GIF version | ||
| Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omlsi.1 | ⊢ 𝐴 ∈ Cℋ |
| omlsi.2 | ⊢ 𝐵 ∈ Sℋ |
| omlsi.3 | ⊢ 𝐴 ⊆ 𝐵 |
| omlsi.4 | ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ |
| Ref | Expression |
|---|---|
| omlsii | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsi.3 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | omlsi.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
| 3 | omlsi.2 | . . . . . 6 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 3 | sheli 31186 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
| 5 | 2, 4 | pjhthlem2 31364 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧)) |
| 6 | eqeq1 2735 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧))) | |
| 7 | eleq1 2819 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 ∈ 𝐴 ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴)) | |
| 8 | 6, 7 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → ((𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
| 9 | oveq1 7348 | . . . . . . . . . 10 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (𝑦 +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧)) | |
| 10 | 9 | eqeq2d 2742 | . . . . . . . . 9 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧))) |
| 11 | 10 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
| 12 | oveq2 7349 | . . . . . . . . . 10 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ))) | |
| 13 | 12 | eqeq2d 2742 | . . . . . . . . 9 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)))) |
| 14 | 13 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
| 15 | 2 | chshii 31199 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ |
| 16 | omlsi.4 | . . . . . . . . 9 ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ | |
| 17 | sh0 31188 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
| 18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐵 |
| 19 | 18 | elimel 4540 | . . . . . . . . 9 ⊢ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐵 |
| 20 | ch0 31200 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 0ℎ ∈ 𝐴) | |
| 21 | 2, 20 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐴 |
| 22 | 21 | elimel 4540 | . . . . . . . . 9 ⊢ if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) ∈ 𝐴 |
| 23 | shocsh 31256 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
| 24 | 15, 23 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (⊥‘𝐴) ∈ Sℋ |
| 25 | sh0 31188 | . . . . . . . . . . 11 ⊢ ((⊥‘𝐴) ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ (⊥‘𝐴) |
| 27 | 26 | elimel 4540 | . . . . . . . . 9 ⊢ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) ∈ (⊥‘𝐴) |
| 28 | 15, 3, 1, 16, 19, 22, 27 | omlsilem 31374 | . . . . . . . 8 ⊢ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) |
| 29 | 8, 11, 14, 28 | dedth3h 4531 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
| 30 | 29 | 3expia 1121 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴))) |
| 31 | 30 | rexlimdv 3131 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
| 32 | 31 | rexlimdva 3133 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
| 33 | 5, 32 | mpd 15 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) |
| 34 | 33 | ssriv 3933 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
| 35 | 1, 34 | eqssi 3946 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 ifcif 4470 ‘cfv 6476 (class class class)co 7341 +ℎ cva 30892 0ℎc0v 30896 Sℋ csh 30900 Cℋ cch 30901 ⊥cort 30902 0ℋc0h 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 ax-hilex 30971 ax-hfvadd 30972 ax-hvcom 30973 ax-hvass 30974 ax-hv0cl 30975 ax-hvaddid 30976 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr1 30980 ax-hvdistr2 30981 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his2 31055 ax-his3 31056 ax-his4 31057 ax-hcompl 31174 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ico 13246 df-icc 13247 df-fz 13403 df-fl 13691 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-rest 17321 df-topgen 17342 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-top 22804 df-topon 22821 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lm 23139 df-haus 23225 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-cfil 25177 df-cau 25178 df-cmet 25179 df-grpo 30465 df-gid 30466 df-ginv 30467 df-gdiv 30468 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-vs 30571 df-nmcv 30572 df-ims 30573 df-ssp 30694 df-ph 30785 df-cbn 30835 df-hnorm 30940 df-hba 30941 df-hvsub 30943 df-hlim 30944 df-hcau 30945 df-sh 31179 df-ch 31193 df-oc 31224 df-ch0 31225 |
| This theorem is referenced by: omlsi 31376 ococi 31377 qlaxr3i 31608 hatomistici 32334 |
| Copyright terms: Public domain | W3C validator |