Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > omlsii | Structured version Visualization version GIF version |
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omlsi.1 | ⊢ 𝐴 ∈ Cℋ |
omlsi.2 | ⊢ 𝐵 ∈ Sℋ |
omlsi.3 | ⊢ 𝐴 ⊆ 𝐵 |
omlsi.4 | ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ |
Ref | Expression |
---|---|
omlsii | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlsi.3 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | omlsi.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
3 | omlsi.2 | . . . . . 6 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | sheli 29477 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
5 | 2, 4 | pjhthlem2 29655 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧)) |
6 | eqeq1 2742 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧))) | |
7 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → (𝑥 ∈ 𝐴 ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴)) | |
8 | 6, 7 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) → ((𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
9 | oveq1 7262 | . . . . . . . . . 10 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (𝑦 +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧)) | |
10 | 9 | eqeq2d 2749 | . . . . . . . . 9 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧))) |
11 | 10 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑦 = if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (𝑦 +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
12 | oveq2 7263 | . . . . . . . . . 10 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ))) | |
13 | 12 | eqeq2d 2749 | . . . . . . . . 9 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) ↔ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)))) |
14 | 13 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) → ((if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ 𝑧) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) ↔ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴))) |
15 | 2 | chshii 29490 | . . . . . . . . 9 ⊢ 𝐴 ∈ Sℋ |
16 | omlsi.4 | . . . . . . . . 9 ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ | |
17 | sh0 29479 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
18 | 3, 17 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐵 |
19 | 18 | elimel 4525 | . . . . . . . . 9 ⊢ if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐵 |
20 | ch0 29491 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Cℋ → 0ℎ ∈ 𝐴) | |
21 | 2, 20 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ 𝐴 |
22 | 21 | elimel 4525 | . . . . . . . . 9 ⊢ if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) ∈ 𝐴 |
23 | shocsh 29547 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
24 | 15, 23 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (⊥‘𝐴) ∈ Sℋ |
25 | sh0 29479 | . . . . . . . . . . 11 ⊢ ((⊥‘𝐴) ∈ Sℋ → 0ℎ ∈ (⊥‘𝐴)) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ 0ℎ ∈ (⊥‘𝐴) |
27 | 26 | elimel 4525 | . . . . . . . . 9 ⊢ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ) ∈ (⊥‘𝐴) |
28 | 15, 3, 1, 16, 19, 22, 27 | omlsilem 29665 | . . . . . . . 8 ⊢ (if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) = (if(𝑦 ∈ 𝐴, 𝑦, 0ℎ) +ℎ if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0ℎ)) → if(𝑥 ∈ 𝐵, 𝑥, 0ℎ) ∈ 𝐴) |
29 | 8, 11, 14, 28 | dedth3h 4516 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
30 | 29 | 3expia 1119 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴))) |
31 | 30 | rexlimdv 3211 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
32 | 31 | rexlimdva 3212 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
33 | 5, 32 | mpd 15 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) |
34 | 33 | ssriv 3921 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
35 | 1, 34 | eqssi 3933 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 ifcif 4456 ‘cfv 6418 (class class class)co 7255 +ℎ cva 29183 0ℎc0v 29187 Sℋ csh 29191 Cℋ cch 29192 ⊥cort 29193 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fz 13169 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lm 22288 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-ssp 28985 df-ph 29076 df-cbn 29126 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 |
This theorem is referenced by: omlsi 29667 ococi 29668 qlaxr3i 29899 hatomistici 30625 |
Copyright terms: Public domain | W3C validator |