Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hoddi | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 29675 does not require linearity.) (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoddi | ⊢ ((𝑅 ∈ LinOp ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1 5703 | . . 3 ⊢ (𝑅 = if(𝑅 ∈ LinOp, 𝑅, 0hop ) → (𝑅 ∘ (𝑆 −op 𝑇)) = (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (𝑆 −op 𝑇))) | |
2 | coeq1 5703 | . . . 4 ⊢ (𝑅 = if(𝑅 ∈ LinOp, 𝑅, 0hop ) → (𝑅 ∘ 𝑆) = (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑆)) | |
3 | coeq1 5703 | . . . 4 ⊢ (𝑅 = if(𝑅 ∈ LinOp, 𝑅, 0hop ) → (𝑅 ∘ 𝑇) = (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇)) | |
4 | 2, 3 | oveq12d 7174 | . . 3 ⊢ (𝑅 = if(𝑅 ∈ LinOp, 𝑅, 0hop ) → ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑆) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇))) |
5 | 1, 4 | eqeq12d 2774 | . 2 ⊢ (𝑅 = if(𝑅 ∈ LinOp, 𝑅, 0hop ) → ((𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) ↔ (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (𝑆 −op 𝑇)) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑆) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇)))) |
6 | oveq1 7163 | . . . 4 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → (𝑆 −op 𝑇) = (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op 𝑇)) | |
7 | 6 | coeq2d 5708 | . . 3 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (𝑆 −op 𝑇)) = (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op 𝑇))) |
8 | coeq2 5704 | . . . 4 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑆) = (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ))) | |
9 | 8 | oveq1d 7171 | . . 3 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑆) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇)) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇))) |
10 | 7, 9 | eqeq12d 2774 | . 2 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (𝑆 −op 𝑇)) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑆) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇)) ↔ (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op 𝑇)) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇)))) |
11 | oveq2 7164 | . . . 4 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op 𝑇) = (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) | |
12 | 11 | coeq2d 5708 | . . 3 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op 𝑇)) = (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )))) |
13 | coeq2 5704 | . . . 4 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇) = (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) | |
14 | 13 | oveq2d 7172 | . . 3 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇)) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )))) |
15 | 12, 14 | eqeq12d 2774 | . 2 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op 𝑇)) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ 𝑇)) ↔ (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))))) |
16 | 0lnop 29879 | . . . 4 ⊢ 0hop ∈ LinOp | |
17 | 16 | elimel 4492 | . . 3 ⊢ if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∈ LinOp |
18 | ho0f 29646 | . . . 4 ⊢ 0hop : ℋ⟶ ℋ | |
19 | 18 | elimf 6502 | . . 3 ⊢ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ): ℋ⟶ ℋ |
20 | 18 | elimf 6502 | . . 3 ⊢ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ): ℋ⟶ ℋ |
21 | 17, 19, 20 | hoddii 29884 | . 2 ⊢ (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) −op if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) = ((if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) −op (if(𝑅 ∈ LinOp, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) |
22 | 5, 10, 15, 21 | dedth3h 4483 | 1 ⊢ ((𝑅 ∈ LinOp ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ifcif 4423 ∘ ccom 5532 ⟶wf 6336 (class class class)co 7156 ℋchba 28814 −op chod 28835 0hop ch0o 28838 LinOpclo 28842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cc 9908 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 ax-hilex 28894 ax-hfvadd 28895 ax-hvcom 28896 ax-hvass 28897 ax-hv0cl 28898 ax-hvaddid 28899 ax-hfvmul 28900 ax-hvmulid 28901 ax-hvmulass 28902 ax-hvdistr1 28903 ax-hvdistr2 28904 ax-hvmul0 28905 ax-hfi 28974 ax-his1 28977 ax-his2 28978 ax-his3 28979 ax-his4 28980 ax-hcompl 29097 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-oadd 8122 df-omul 8123 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-acn 9417 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-rlim 14907 df-sum 15104 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-starv 16651 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ds 16658 df-unif 16659 df-hom 16660 df-cco 16661 df-rest 16767 df-topn 16768 df-0g 16786 df-gsum 16787 df-topgen 16788 df-pt 16789 df-prds 16792 df-xrs 16846 df-qtop 16851 df-imas 16852 df-xps 16854 df-mre 16928 df-mrc 16929 df-acs 16931 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-submnd 18036 df-mulg 18305 df-cntz 18527 df-cmn 18988 df-psmet 20171 df-xmet 20172 df-met 20173 df-bl 20174 df-mopn 20175 df-fbas 20176 df-fg 20177 df-cnfld 20180 df-top 21607 df-topon 21624 df-topsp 21646 df-bases 21659 df-cld 21732 df-ntr 21733 df-cls 21734 df-nei 21811 df-cn 21940 df-cnp 21941 df-lm 21942 df-haus 22028 df-tx 22275 df-hmeo 22468 df-fil 22559 df-fm 22651 df-flim 22652 df-flf 22653 df-xms 23035 df-ms 23036 df-tms 23037 df-cfil 23968 df-cau 23969 df-cmet 23970 df-grpo 28388 df-gid 28389 df-ginv 28390 df-gdiv 28391 df-ablo 28440 df-vc 28454 df-nv 28487 df-va 28490 df-ba 28491 df-sm 28492 df-0v 28493 df-vs 28494 df-nmcv 28495 df-ims 28496 df-dip 28596 df-ssp 28617 df-ph 28708 df-cbn 28758 df-hnorm 28863 df-hba 28864 df-hvsub 28866 df-hlim 28867 df-hcau 28868 df-sh 29102 df-ch 29116 df-oc 29147 df-ch0 29148 df-shs 29203 df-pjh 29290 df-hodif 29627 df-h0op 29643 df-lnop 29736 df-hmop 29739 |
This theorem is referenced by: opsqrlem6 30040 |
Copyright terms: Public domain | W3C validator |