MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdiri Structured version   Visualization version   GIF version

Theorem ipdiri 30792
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ipdiri ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem ipdiri
StepHypRef Expression
1 oveq1 7360 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵))
21oveq1d 7368 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶))
3 oveq1 7360 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶))
43oveq1d 7368 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))
52, 4eqeq12d 2745 . 2 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶))))
6 oveq2 7361 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈))))
76oveq1d 7368 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶))
8 oveq1 7360 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (𝐵𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))
98oveq2d 7369 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)))
107, 9eqeq12d 2745 . 2 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))))
11 oveq2 7361 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
12 oveq2 7361 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
13 oveq2 7361 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
1412, 13oveq12d 7371 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈)))))
1511, 14eqeq12d 2745 . 2 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))))
16 ip1i.1 . . 3 𝑋 = (BaseSet‘𝑈)
17 ip1i.2 . . 3 𝐺 = ( +𝑣𝑈)
18 ip1i.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
19 ip1i.7 . . 3 𝑃 = (·𝑖OLD𝑈)
20 ip1i.9 . . 3 𝑈 ∈ CPreHilOLD
21 eqid 2729 . . . 4 (0vec𝑈) = (0vec𝑈)
2216, 21, 20elimph 30782 . . 3 if(𝐴𝑋, 𝐴, (0vec𝑈)) ∈ 𝑋
2316, 21, 20elimph 30782 . . 3 if(𝐵𝑋, 𝐵, (0vec𝑈)) ∈ 𝑋
2416, 21, 20elimph 30782 . . 3 if(𝐶𝑋, 𝐶, (0vec𝑈)) ∈ 𝑋
2516, 17, 18, 19, 20, 22, 23, 24ipdirilem 30791 . 2 ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
265, 10, 15, 25dedth3h 4539 1 ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  ifcif 4478  cfv 6486  (class class class)co 7353   + caddc 11031   +𝑣 cpv 30547  BaseSetcba 30548   ·𝑠OLD cns 30549  0veccn0v 30550  ·𝑖OLDcdip 30662  CPreHilOLDccphlo 30774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-grpo 30455  df-gid 30456  df-ginv 30457  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-nmcv 30562  df-dip 30663  df-ph 30775
This theorem is referenced by:  ipasslem1  30793  ipasslem2  30794  ipasslem11  30802  dipdir  30804
  Copyright terms: Public domain W3C validator