MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdiri Structured version   Visualization version   GIF version

Theorem ipdiri 29093
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ipdiri ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem ipdiri
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵))
21oveq1d 7270 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶))
3 oveq1 7262 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶))
43oveq1d 7270 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))
52, 4eqeq12d 2754 . 2 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶))))
6 oveq2 7263 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈))))
76oveq1d 7270 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶))
8 oveq1 7262 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (𝐵𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))
98oveq2d 7271 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)))
107, 9eqeq12d 2754 . 2 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))))
11 oveq2 7263 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
12 oveq2 7263 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
13 oveq2 7263 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
1412, 13oveq12d 7273 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈)))))
1511, 14eqeq12d 2754 . 2 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))))
16 ip1i.1 . . 3 𝑋 = (BaseSet‘𝑈)
17 ip1i.2 . . 3 𝐺 = ( +𝑣𝑈)
18 ip1i.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
19 ip1i.7 . . 3 𝑃 = (·𝑖OLD𝑈)
20 ip1i.9 . . 3 𝑈 ∈ CPreHilOLD
21 eqid 2738 . . . 4 (0vec𝑈) = (0vec𝑈)
2216, 21, 20elimph 29083 . . 3 if(𝐴𝑋, 𝐴, (0vec𝑈)) ∈ 𝑋
2316, 21, 20elimph 29083 . . 3 if(𝐵𝑋, 𝐵, (0vec𝑈)) ∈ 𝑋
2416, 21, 20elimph 29083 . . 3 if(𝐶𝑋, 𝐶, (0vec𝑈)) ∈ 𝑋
2516, 17, 18, 19, 20, 22, 23, 24ipdirilem 29092 . 2 ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
265, 10, 15, 25dedth3h 4516 1 ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  ifcif 4456  cfv 6418  (class class class)co 7255   + caddc 10805   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  0veccn0v 28851  ·𝑖OLDcdip 28963  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-dip 28964  df-ph 29076
This theorem is referenced by:  ipasslem1  29094  ipasslem2  29095  ipasslem11  29103  dipdir  29105
  Copyright terms: Public domain W3C validator