| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipdiri | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| ipdiri | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)) | |
| 2 | 1 | oveq1d 7361 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶)) |
| 3 | oveq1 7353 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶)) | |
| 4 | 3 | oveq1d 7361 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶))) |
| 5 | 2, 4 | eqeq12d 2747 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))) |
| 6 | oveq2 7354 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
| 7 | 6 | oveq1d 7361 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶)) |
| 8 | oveq1 7353 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐵𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) | |
| 9 | 8 | oveq2d 7362 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))) |
| 10 | 7, 9 | eqeq12d 2747 | . 2 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)))) |
| 11 | oveq2 7354 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
| 12 | oveq2 7354 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
| 13 | oveq2 7354 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
| 14 | 12, 13 | oveq12d 7364 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))) |
| 15 | 11, 14 | eqeq12d 2747 | . 2 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))))) |
| 16 | ip1i.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 17 | ip1i.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 18 | ip1i.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 19 | ip1i.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 20 | ip1i.9 | . . 3 ⊢ 𝑈 ∈ CPreHilOLD | |
| 21 | eqid 2731 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 22 | 16, 21, 20 | elimph 30798 | . . 3 ⊢ if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) ∈ 𝑋 |
| 23 | 16, 21, 20 | elimph 30798 | . . 3 ⊢ if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) ∈ 𝑋 |
| 24 | 16, 21, 20 | elimph 30798 | . . 3 ⊢ if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) ∈ 𝑋 |
| 25 | 16, 17, 18, 19, 20, 22, 23, 24 | ipdirilem 30807 | . 2 ⊢ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) |
| 26 | 5, 10, 15, 25 | dedth3h 4536 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ifcif 4475 ‘cfv 6481 (class class class)co 7346 + caddc 11009 +𝑣 cpv 30563 BaseSetcba 30564 ·𝑠OLD cns 30565 0veccn0v 30566 ·𝑖OLDcdip 30678 CPreHilOLDccphlo 30790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-grpo 30471 df-gid 30472 df-ginv 30473 df-ablo 30523 df-vc 30537 df-nv 30570 df-va 30573 df-ba 30574 df-sm 30575 df-0v 30576 df-nmcv 30578 df-dip 30679 df-ph 30791 |
| This theorem is referenced by: ipasslem1 30809 ipasslem2 30810 ipasslem11 30818 dipdir 30820 |
| Copyright terms: Public domain | W3C validator |