![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdiri | Structured version Visualization version GIF version |
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ipdiri | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7445 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)) | |
2 | 1 | oveq1d 7453 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶)) |
3 | oveq1 7445 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶)) | |
4 | 3 | oveq1d 7453 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶))) |
5 | 2, 4 | eqeq12d 2753 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))) |
6 | oveq2 7446 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
7 | 6 | oveq1d 7453 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶)) |
8 | oveq1 7445 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐵𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) | |
9 | 8 | oveq2d 7454 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))) |
10 | 7, 9 | eqeq12d 2753 | . 2 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)))) |
11 | oveq2 7446 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
12 | oveq2 7446 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
13 | oveq2 7446 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
14 | 12, 13 | oveq12d 7456 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))) |
15 | 11, 14 | eqeq12d 2753 | . 2 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))))) |
16 | ip1i.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
17 | ip1i.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | ip1i.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
19 | ip1i.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
20 | ip1i.9 | . . 3 ⊢ 𝑈 ∈ CPreHilOLD | |
21 | eqid 2737 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
22 | 16, 21, 20 | elimph 30865 | . . 3 ⊢ if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) ∈ 𝑋 |
23 | 16, 21, 20 | elimph 30865 | . . 3 ⊢ if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) ∈ 𝑋 |
24 | 16, 21, 20 | elimph 30865 | . . 3 ⊢ if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) ∈ 𝑋 |
25 | 16, 17, 18, 19, 20, 22, 23, 24 | ipdirilem 30874 | . 2 ⊢ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) |
26 | 5, 10, 15, 25 | dedth3h 4594 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ifcif 4534 ‘cfv 6569 (class class class)co 7438 + caddc 11165 +𝑣 cpv 30630 BaseSetcba 30631 ·𝑠OLD cns 30632 0veccn0v 30633 ·𝑖OLDcdip 30745 CPreHilOLDccphlo 30857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15729 df-grpo 30538 df-gid 30539 df-ginv 30540 df-ablo 30590 df-vc 30604 df-nv 30637 df-va 30640 df-ba 30641 df-sm 30642 df-0v 30643 df-nmcv 30645 df-dip 30746 df-ph 30858 |
This theorem is referenced by: ipasslem1 30876 ipasslem2 30877 ipasslem11 30885 dipdir 30887 |
Copyright terms: Public domain | W3C validator |