MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdiri Structured version   Visualization version   GIF version

Theorem ipdiri 28601
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ipdiri ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem ipdiri
StepHypRef Expression
1 oveq1 7157 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵))
21oveq1d 7165 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶))
3 oveq1 7157 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶))
43oveq1d 7165 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))
52, 4eqeq12d 2837 . 2 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶))))
6 oveq2 7158 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈))))
76oveq1d 7165 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶))
8 oveq1 7157 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (𝐵𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))
98oveq2d 7166 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)))
107, 9eqeq12d 2837 . 2 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))))
11 oveq2 7158 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
12 oveq2 7158 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
13 oveq2 7158 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
1412, 13oveq12d 7168 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈)))))
1511, 14eqeq12d 2837 . 2 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))))
16 ip1i.1 . . 3 𝑋 = (BaseSet‘𝑈)
17 ip1i.2 . . 3 𝐺 = ( +𝑣𝑈)
18 ip1i.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
19 ip1i.7 . . 3 𝑃 = (·𝑖OLD𝑈)
20 ip1i.9 . . 3 𝑈 ∈ CPreHilOLD
21 eqid 2821 . . . 4 (0vec𝑈) = (0vec𝑈)
2216, 21, 20elimph 28591 . . 3 if(𝐴𝑋, 𝐴, (0vec𝑈)) ∈ 𝑋
2316, 21, 20elimph 28591 . . 3 if(𝐵𝑋, 𝐵, (0vec𝑈)) ∈ 𝑋
2416, 21, 20elimph 28591 . . 3 if(𝐶𝑋, 𝐶, (0vec𝑈)) ∈ 𝑋
2516, 17, 18, 19, 20, 22, 23, 24ipdirilem 28600 . 2 ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
265, 10, 15, 25dedth3h 4524 1 ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  ifcif 4466  cfv 6349  (class class class)co 7150   + caddc 10534   +𝑣 cpv 28356  BaseSetcba 28357   ·𝑠OLD cns 28358  0veccn0v 28359  ·𝑖OLDcdip 28471  CPreHilOLDccphlo 28583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-grpo 28264  df-gid 28265  df-ginv 28266  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371  df-dip 28472  df-ph 28584
This theorem is referenced by:  ipasslem1  28602  ipasslem2  28603  ipasslem11  28611  dipdir  28613
  Copyright terms: Public domain W3C validator