![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdiri | Structured version Visualization version GIF version |
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ipdiri | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7364 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)) | |
2 | 1 | oveq1d 7372 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶)) |
3 | oveq1 7364 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶)) | |
4 | 3 | oveq1d 7372 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶))) |
5 | 2, 4 | eqeq12d 2752 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))) |
6 | oveq2 7365 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
7 | 6 | oveq1d 7372 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶)) |
8 | oveq1 7364 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐵𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) | |
9 | 8 | oveq2d 7373 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))) |
10 | 7, 9 | eqeq12d 2752 | . 2 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)))) |
11 | oveq2 7365 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
12 | oveq2 7365 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
13 | oveq2 7365 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
14 | 12, 13 | oveq12d 7375 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))) |
15 | 11, 14 | eqeq12d 2752 | . 2 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))))) |
16 | ip1i.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
17 | ip1i.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | ip1i.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
19 | ip1i.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
20 | ip1i.9 | . . 3 ⊢ 𝑈 ∈ CPreHilOLD | |
21 | eqid 2736 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
22 | 16, 21, 20 | elimph 29762 | . . 3 ⊢ if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) ∈ 𝑋 |
23 | 16, 21, 20 | elimph 29762 | . . 3 ⊢ if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) ∈ 𝑋 |
24 | 16, 21, 20 | elimph 29762 | . . 3 ⊢ if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) ∈ 𝑋 |
25 | 16, 17, 18, 19, 20, 22, 23, 24 | ipdirilem 29771 | . 2 ⊢ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) |
26 | 5, 10, 15, 25 | dedth3h 4546 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ifcif 4486 ‘cfv 6496 (class class class)co 7357 + caddc 11054 +𝑣 cpv 29527 BaseSetcba 29528 ·𝑠OLD cns 29529 0veccn0v 29530 ·𝑖OLDcdip 29642 CPreHilOLDccphlo 29754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-grpo 29435 df-gid 29436 df-ginv 29437 df-ablo 29487 df-vc 29501 df-nv 29534 df-va 29537 df-ba 29538 df-sm 29539 df-0v 29540 df-nmcv 29542 df-dip 29643 df-ph 29755 |
This theorem is referenced by: ipasslem1 29773 ipasslem2 29774 ipasslem11 29782 dipdir 29784 |
Copyright terms: Public domain | W3C validator |