Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipdiri | Structured version Visualization version GIF version |
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ipdiri | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7177 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)) | |
2 | 1 | oveq1d 7185 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶)) |
3 | oveq1 7177 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶)) | |
4 | 3 | oveq1d 7185 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶))) |
5 | 2, 4 | eqeq12d 2754 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))) |
6 | oveq2 7178 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
7 | 6 | oveq1d 7185 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶)) |
8 | oveq1 7177 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐵𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) | |
9 | 8 | oveq2d 7186 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))) |
10 | 7, 9 | eqeq12d 2754 | . 2 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)))) |
11 | oveq2 7178 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
12 | oveq2 7178 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
13 | oveq2 7178 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
14 | 12, 13 | oveq12d 7188 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))) |
15 | 11, 14 | eqeq12d 2754 | . 2 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))))) |
16 | ip1i.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
17 | ip1i.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | ip1i.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
19 | ip1i.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
20 | ip1i.9 | . . 3 ⊢ 𝑈 ∈ CPreHilOLD | |
21 | eqid 2738 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
22 | 16, 21, 20 | elimph 28755 | . . 3 ⊢ if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) ∈ 𝑋 |
23 | 16, 21, 20 | elimph 28755 | . . 3 ⊢ if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) ∈ 𝑋 |
24 | 16, 21, 20 | elimph 28755 | . . 3 ⊢ if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) ∈ 𝑋 |
25 | 16, 17, 18, 19, 20, 22, 23, 24 | ipdirilem 28764 | . 2 ⊢ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) |
26 | 5, 10, 15, 25 | dedth3h 4474 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ifcif 4414 ‘cfv 6339 (class class class)co 7170 + caddc 10618 +𝑣 cpv 28520 BaseSetcba 28521 ·𝑠OLD cns 28522 0veccn0v 28523 ·𝑖OLDcdip 28635 CPreHilOLDccphlo 28747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-fz 12982 df-fzo 13125 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-sum 15136 df-grpo 28428 df-gid 28429 df-ginv 28430 df-ablo 28480 df-vc 28494 df-nv 28527 df-va 28530 df-ba 28531 df-sm 28532 df-0v 28533 df-nmcv 28535 df-dip 28636 df-ph 28748 |
This theorem is referenced by: ipasslem1 28766 ipasslem2 28767 ipasslem11 28775 dipdir 28777 |
Copyright terms: Public domain | W3C validator |