Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hocsubdir | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hocsubdir | ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7158 | . . . 4 ⊢ (𝑅 = if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) → (𝑅 −op 𝑆) = (if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op 𝑆)) | |
2 | 1 | coeq1d 5702 | . . 3 ⊢ (𝑅 = if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) → ((𝑅 −op 𝑆) ∘ 𝑇) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op 𝑆) ∘ 𝑇)) |
3 | coeq1 5698 | . . . 4 ⊢ (𝑅 = if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) → (𝑅 ∘ 𝑇) = (if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇)) | |
4 | 3 | oveq1d 7166 | . . 3 ⊢ (𝑅 = if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) → ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
5 | 2, 4 | eqeq12d 2775 | . 2 ⊢ (𝑅 = if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) → (((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) ↔ ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op 𝑆) ∘ 𝑇) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (𝑆 ∘ 𝑇)))) |
6 | oveq2 7159 | . . . 4 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → (if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op 𝑆) = (if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ))) | |
7 | 6 | coeq1d 5702 | . . 3 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op 𝑆) ∘ 𝑇) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) ∘ 𝑇)) |
8 | coeq1 5698 | . . . 4 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → (𝑆 ∘ 𝑇) = (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ 𝑇)) | |
9 | 8 | oveq2d 7167 | . . 3 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (𝑆 ∘ 𝑇)) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ 𝑇))) |
10 | 7, 9 | eqeq12d 2775 | . 2 ⊢ (𝑆 = if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) → (((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op 𝑆) ∘ 𝑇) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (𝑆 ∘ 𝑇)) ↔ ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) ∘ 𝑇) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ 𝑇)))) |
11 | coeq2 5699 | . . 3 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) ∘ 𝑇) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) | |
12 | coeq2 5699 | . . . 4 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → (if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) = (if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) | |
13 | coeq2 5699 | . . . 4 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ 𝑇) = (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) | |
14 | 12, 13 | oveq12d 7169 | . . 3 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ 𝑇)) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )) −op (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )))) |
15 | 11, 14 | eqeq12d 2775 | . 2 ⊢ (𝑇 = if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ) → (((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) ∘ 𝑇) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ 𝑇) −op (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ 𝑇)) ↔ ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )) −op (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))))) |
16 | ho0f 29626 | . . . 4 ⊢ 0hop : ℋ⟶ ℋ | |
17 | 16 | elimf 6498 | . . 3 ⊢ if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ): ℋ⟶ ℋ |
18 | 16 | elimf 6498 | . . 3 ⊢ if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ): ℋ⟶ ℋ |
19 | 16 | elimf 6498 | . . 3 ⊢ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ): ℋ⟶ ℋ |
20 | 17, 18, 19 | hocsubdiri 29655 | . 2 ⊢ ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) −op if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop )) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )) = ((if(𝑅: ℋ⟶ ℋ, 𝑅, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop )) −op (if(𝑆: ℋ⟶ ℋ, 𝑆, 0hop ) ∘ if(𝑇: ℋ⟶ ℋ, 𝑇, 0hop ))) |
21 | 5, 10, 15, 20 | dedth3h 4481 | 1 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ifcif 4421 ∘ ccom 5529 ⟶wf 6332 (class class class)co 7151 ℋchba 28794 −op chod 28815 0hop ch0o 28818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9130 ax-cc 9888 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 ax-addf 10647 ax-mulf 10648 ax-hilex 28874 ax-hfvadd 28875 ax-hvcom 28876 ax-hvass 28877 ax-hv0cl 28878 ax-hvaddid 28879 ax-hfvmul 28880 ax-hvmulid 28881 ax-hvmulass 28882 ax-hvdistr1 28883 ax-hvdistr2 28884 ax-hvmul0 28885 ax-hfi 28954 ax-his1 28957 ax-his2 28958 ax-his3 28959 ax-his4 28960 ax-hcompl 29077 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-oadd 8117 df-omul 8118 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8860 df-fi 8901 df-sup 8932 df-inf 8933 df-oi 9000 df-card 9394 df-acn 9397 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-q 12382 df-rp 12424 df-xneg 12541 df-xadd 12542 df-xmul 12543 df-ioo 12776 df-ico 12778 df-icc 12779 df-fz 12933 df-fzo 13076 df-fl 13204 df-seq 13412 df-exp 13473 df-hash 13734 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-clim 14886 df-rlim 14887 df-sum 15084 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-starv 16631 df-sca 16632 df-vsca 16633 df-ip 16634 df-tset 16635 df-ple 16636 df-ds 16638 df-unif 16639 df-hom 16640 df-cco 16641 df-rest 16747 df-topn 16748 df-0g 16766 df-gsum 16767 df-topgen 16768 df-pt 16769 df-prds 16772 df-xrs 16826 df-qtop 16831 df-imas 16832 df-xps 16834 df-mre 16908 df-mrc 16909 df-acs 16911 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-submnd 18016 df-mulg 18285 df-cntz 18507 df-cmn 18968 df-psmet 20151 df-xmet 20152 df-met 20153 df-bl 20154 df-mopn 20155 df-fbas 20156 df-fg 20157 df-cnfld 20160 df-top 21587 df-topon 21604 df-topsp 21626 df-bases 21639 df-cld 21712 df-ntr 21713 df-cls 21714 df-nei 21791 df-cn 21920 df-cnp 21921 df-lm 21922 df-haus 22008 df-tx 22255 df-hmeo 22448 df-fil 22539 df-fm 22631 df-flim 22632 df-flf 22633 df-xms 23015 df-ms 23016 df-tms 23017 df-cfil 23948 df-cau 23949 df-cmet 23950 df-grpo 28368 df-gid 28369 df-ginv 28370 df-gdiv 28371 df-ablo 28420 df-vc 28434 df-nv 28467 df-va 28470 df-ba 28471 df-sm 28472 df-0v 28473 df-vs 28474 df-nmcv 28475 df-ims 28476 df-dip 28576 df-ssp 28597 df-ph 28688 df-cbn 28738 df-hnorm 28843 df-hba 28844 df-hvsub 28846 df-hlim 28847 df-hcau 28848 df-sh 29082 df-ch 29096 df-oc 29127 df-ch0 29128 df-shs 29183 df-pjh 29270 df-hodif 29607 df-h0op 29623 |
This theorem is referenced by: opsqrlem6 30020 |
Copyright terms: Public domain | W3C validator |