![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddcan | Structured version Visualization version GIF version |
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddcan | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7403 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) | |
2 | oveq1 7403 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 +ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶)) | |
3 | 1, 2 | eqeq12d 2749 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶))) |
4 | 3 | bibi1d 344 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ 𝐵 = 𝐶))) |
5 | oveq2 7404 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | eqeq1d 2735 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶))) |
7 | eqeq1 2737 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶)) | |
8 | 6, 7 | bibi12d 346 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶))) |
9 | oveq2 7404 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
10 | 9 | eqeq2d 2744 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
11 | eqeq2 2745 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
12 | 10, 11 | bibi12d 346 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
13 | ifhvhv0 30240 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
14 | ifhvhv0 30240 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
15 | ifhvhv0 30240 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
16 | 13, 14, 15 | hvaddcani 30283 | . 2 ⊢ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) |
17 | 4, 8, 12, 16 | dedth3h 4584 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ifcif 4524 (class class class)co 7396 ℋchba 30137 +ℎ cva 30138 0ℎc0v 30142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-hvcom 30219 ax-hvass 30220 ax-hv0cl 30221 ax-hvaddid 30222 ax-hfvmul 30223 ax-hvmulid 30224 ax-hvdistr2 30227 ax-hvmul0 30228 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-ltxr 11240 df-sub 11433 df-neg 11434 df-hvsub 30189 |
This theorem is referenced by: hvaddcan2 30289 hvsubcan 30292 |
Copyright terms: Public domain | W3C validator |