Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvaddcan | Structured version Visualization version GIF version |
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddcan | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) | |
2 | oveq1 7262 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 +ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶)) | |
3 | 1, 2 | eqeq12d 2754 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶))) |
4 | 3 | bibi1d 343 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ 𝐵 = 𝐶))) |
5 | oveq2 7263 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | eqeq1d 2740 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶))) |
7 | eqeq1 2742 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶)) | |
8 | 6, 7 | bibi12d 345 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶))) |
9 | oveq2 7263 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
10 | 9 | eqeq2d 2749 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
11 | eqeq2 2750 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
12 | 10, 11 | bibi12d 345 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
13 | ifhvhv0 29285 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
14 | ifhvhv0 29285 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
15 | ifhvhv0 29285 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
16 | 13, 14, 15 | hvaddcani 29328 | . 2 ⊢ ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) = if(𝐶 ∈ ℋ, 𝐶, 0ℎ)) |
17 | 4, 8, 12, 16 | dedth3h 4516 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ifcif 4456 (class class class)co 7255 ℋchba 29182 +ℎ cva 29183 0ℎc0v 29187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr2 29272 ax-hvmul0 29273 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-hvsub 29234 |
This theorem is referenced by: hvaddcan2 29334 hvsubcan 29337 |
Copyright terms: Public domain | W3C validator |