HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcan Structured version   Visualization version   GIF version

Theorem hvaddcan 31102
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddcan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvaddcan
StepHypRef Expression
1 oveq1 7455 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
2 oveq1 7455 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶))
31, 2eqeq12d 2756 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
43bibi1d 343 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶)))
5 oveq2 7456 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
65eqeq1d 2742 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
7 eqeq1 2744 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶))
86, 7bibi12d 345 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶)))
9 oveq2 7456 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)))
109eqeq2d 2751 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0))))
11 eqeq2 2752 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0)))
1210, 11bibi12d 345 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))))
13 ifhvhv0 31054 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
14 ifhvhv0 31054 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
15 ifhvhv0 31054 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
1613, 14, 15hvaddcani 31097 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))
174, 8, 12, 16dedth3h 4608 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  ifcif 4548  (class class class)co 7448  chba 30951   + cva 30952  0c0v 30956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvdistr2 31041  ax-hvmul0 31042
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523  df-hvsub 31003
This theorem is referenced by:  hvaddcan2  31103  hvsubcan  31106
  Copyright terms: Public domain W3C validator