HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcan Structured version   Visualization version   GIF version

Theorem hvaddcan 30323
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddcan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvaddcan
StepHypRef Expression
1 oveq1 7416 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
2 oveq1 7416 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶))
31, 2eqeq12d 2749 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
43bibi1d 344 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶)))
5 oveq2 7417 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
65eqeq1d 2735 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
7 eqeq1 2737 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶))
86, 7bibi12d 346 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶)))
9 oveq2 7417 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)))
109eqeq2d 2744 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0))))
11 eqeq2 2745 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0)))
1210, 11bibi12d 346 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))))
13 ifhvhv0 30275 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
14 ifhvhv0 30275 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
15 ifhvhv0 30275 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
1613, 14, 15hvaddcani 30318 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))
174, 8, 12, 16dedth3h 4589 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  ifcif 4529  (class class class)co 7409  chba 30172   + cva 30173  0c0v 30177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-hvcom 30254  ax-hvass 30255  ax-hv0cl 30256  ax-hvaddid 30257  ax-hfvmul 30258  ax-hvmulid 30259  ax-hvdistr2 30262  ax-hvmul0 30263
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-neg 11447  df-hvsub 30224
This theorem is referenced by:  hvaddcan2  30324  hvsubcan  30327
  Copyright terms: Public domain W3C validator