HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcan Structured version   Visualization version   GIF version

Theorem hvaddcan 30908
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddcan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvaddcan
StepHypRef Expression
1 oveq1 7433 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
2 oveq1 7433 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶))
31, 2eqeq12d 2744 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
43bibi1d 342 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶)))
5 oveq2 7434 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
65eqeq1d 2730 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
7 eqeq1 2732 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶))
86, 7bibi12d 344 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶)))
9 oveq2 7434 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)))
109eqeq2d 2739 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0))))
11 eqeq2 2740 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0)))
1210, 11bibi12d 344 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))))
13 ifhvhv0 30860 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
14 ifhvhv0 30860 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
15 ifhvhv0 30860 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
1613, 14, 15hvaddcani 30903 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))
174, 8, 12, 16dedth3h 4592 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  ifcif 4532  (class class class)co 7426  chba 30757   + cva 30758  0c0v 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-hvcom 30839  ax-hvass 30840  ax-hv0cl 30841  ax-hvaddid 30842  ax-hfvmul 30843  ax-hvmulid 30844  ax-hvdistr2 30847  ax-hvmul0 30848
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-ltxr 11293  df-sub 11486  df-neg 11487  df-hvsub 30809
This theorem is referenced by:  hvaddcan2  30909  hvsubcan  30912
  Copyright terms: Public domain W3C validator