HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcan Structured version   Visualization version   GIF version

Theorem hvaddcan 31042
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddcan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvaddcan
StepHypRef Expression
1 oveq1 7348 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
2 oveq1 7348 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶))
31, 2eqeq12d 2747 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
43bibi1d 343 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶)))
5 oveq2 7349 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
65eqeq1d 2733 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶)))
7 eqeq1 2735 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶))
86, 7bibi12d 345 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ 𝐵 = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶)))
9 oveq2 7349 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)))
109eqeq2d 2742 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0))))
11 eqeq2 2743 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶 ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0)))
1210, 11bibi12d 345 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐶) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = 𝐶) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))))
13 ifhvhv0 30994 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
14 ifhvhv0 30994 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
15 ifhvhv0 30994 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
1613, 14, 15hvaddcani 31037 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) ↔ if(𝐵 ∈ ℋ, 𝐵, 0) = if(𝐶 ∈ ℋ, 𝐶, 0))
174, 8, 12, 16dedth3h 4531 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  ifcif 4470  (class class class)co 7341  chba 30891   + cva 30892  0c0v 30896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-hvcom 30973  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvdistr2 30981  ax-hvmul0 30982
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-sub 11341  df-neg 11342  df-hvsub 30943
This theorem is referenced by:  hvaddcan2  31043  hvsubcan  31046
  Copyright terms: Public domain W3C validator