![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsle | Structured version Visualization version GIF version |
Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . . . . . . . . . . 13 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑁 < 𝑀 ↔ 𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1))) | |
2 | oveq2 7456 | . . . . . . . . . . . . . 14 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · 𝑀) = (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1))) | |
3 | 2 | neeq1d 3006 | . . . . . . . . . . . . 13 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑛 · 𝑀) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁)) |
4 | 1, 3 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁) ↔ (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁))) |
5 | breq1 5169 | . . . . . . . . . . . . 13 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) ↔ if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1))) | |
6 | neeq2 3010 | . . . . . . . . . . . . 13 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))) | |
7 | 5, 6 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))) |
8 | oveq1 7455 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) = (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1))) | |
9 | 8 | neeq1d 3006 | . . . . . . . . . . . . 13 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1) ↔ (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))) |
10 | 9 | imbi2d 340 | . . . . . . . . . . . 12 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))) |
11 | 1z 12673 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℤ | |
12 | 11 | elimel 4617 | . . . . . . . . . . . . 13 ⊢ if(𝑀 ∈ ℤ, 𝑀, 1) ∈ ℤ |
13 | 1nn 12304 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℕ | |
14 | 13 | elimel 4617 | . . . . . . . . . . . . 13 ⊢ if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ |
15 | 11 | elimel 4617 | . . . . . . . . . . . . 13 ⊢ if(𝑛 ∈ ℤ, 𝑛, 1) ∈ ℤ |
16 | 12, 14, 15 | dvdslelem 16357 | . . . . . . . . . . . 12 ⊢ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) |
17 | 4, 7, 10, 16 | dedth3h 4608 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁)) |
18 | 17 | 3expia 1121 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑛 ∈ ℤ → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁))) |
19 | 18 | com23 86 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁))) |
20 | 19 | 3impia 1117 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁)) |
21 | 20 | imp 406 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁) |
22 | 21 | neneqd 2951 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁) |
23 | 22 | nrexdv 3155 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁) |
24 | nnz 12660 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
25 | divides 16304 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | |
26 | 24, 25 | sylan2 592 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
27 | 26 | 3adant3 1132 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
28 | 23, 27 | mtbird 325 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ 𝑀 ∥ 𝑁) |
29 | 28 | 3expia 1121 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → ¬ 𝑀 ∥ 𝑁)) |
30 | 29 | con2d 134 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → ¬ 𝑁 < 𝑀)) |
31 | zre 12643 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
32 | nnre 12300 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
33 | lenlt 11368 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) | |
34 | 31, 32, 33 | syl2an 595 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
35 | 30, 34 | sylibrd 259 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ifcif 4548 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 1c1 11185 · cmul 11189 < clt 11324 ≤ cle 11325 ℕcn 12293 ℤcz 12639 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-dvds 16303 |
This theorem is referenced by: dvdsleabs 16359 dvdsssfz1 16366 fzm1ndvds 16370 fzo0dvdseq 16371 gcd1 16574 bezoutlem4 16589 dfgcd2 16593 gcdzeq 16599 bezoutr1 16616 lcmgcdlem 16653 qredeq 16704 isprm3 16730 prmdvdsfz 16752 isprm5 16754 maxprmfct 16756 isprm6 16761 prmfac1 16767 ncoprmlnprm 16775 pcpre1 16889 pcidlem 16919 pcprod 16942 pcfac 16946 pockthg 16953 prmreclem1 16963 prmreclem3 16965 prmreclem5 16967 1arith 16974 4sqlem11 17002 prmolelcmf 17095 gexcl2 19631 sylow1lem1 19640 sylow1lem5 19644 gexex 19895 ablfac1eu 20117 ablfaclem3 20131 znidomb 21603 dvdsflsumcom 27249 chtublem 27273 vmasum 27278 logfac2 27279 bposlem6 27351 lgsdir 27394 lgsdilem2 27395 lgsne0 27397 lgsqrlem2 27409 lgsquadlem2 27443 2sqlem8 27488 2sqblem 27493 2sqmod 27498 oddpwdc 34319 nn0prpw 36289 lcmineqlem20 42005 lcmineqlem22 42007 aks4d1p3 42035 aks4d1p6 42038 aks4d1p8d2 42042 aks4d1p8 42044 primrootlekpowne0 42062 aks6d1c2lem4 42084 grpods 42151 unitscyglem2 42153 unitscyglem4 42155 gcdle1d 42317 gcdle2d 42318 nznngen 44285 etransclem41 46196 |
Copyright terms: Public domain | W3C validator |