| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsle | Structured version Visualization version GIF version | ||
| Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . . . . . . . . . . . 13 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑁 < 𝑀 ↔ 𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 2 | oveq2 7363 | . . . . . . . . . . . . . 14 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · 𝑀) = (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 3 | 2 | neeq1d 2989 | . . . . . . . . . . . . 13 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑛 · 𝑀) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁)) |
| 4 | 1, 3 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁) ↔ (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁))) |
| 5 | breq1 5098 | . . . . . . . . . . . . 13 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) ↔ if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 6 | neeq2 2993 | . . . . . . . . . . . . 13 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))) | |
| 7 | 5, 6 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))) |
| 8 | oveq1 7362 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) = (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 9 | 8 | neeq1d 2989 | . . . . . . . . . . . . 13 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1) ↔ (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))) |
| 10 | 9 | imbi2d 340 | . . . . . . . . . . . 12 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))) |
| 11 | 1z 12512 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℤ | |
| 12 | 11 | elimel 4546 | . . . . . . . . . . . . 13 ⊢ if(𝑀 ∈ ℤ, 𝑀, 1) ∈ ℤ |
| 13 | 1nn 12146 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℕ | |
| 14 | 13 | elimel 4546 | . . . . . . . . . . . . 13 ⊢ if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ |
| 15 | 11 | elimel 4546 | . . . . . . . . . . . . 13 ⊢ if(𝑛 ∈ ℤ, 𝑛, 1) ∈ ℤ |
| 16 | 12, 14, 15 | dvdslelem 16230 | . . . . . . . . . . . 12 ⊢ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) |
| 17 | 4, 7, 10, 16 | dedth3h 4537 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁)) |
| 18 | 17 | 3expia 1121 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑛 ∈ ℤ → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁))) |
| 19 | 18 | com23 86 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁))) |
| 20 | 19 | 3impia 1117 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁)) |
| 21 | 20 | imp 406 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁) |
| 22 | 21 | neneqd 2935 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁) |
| 23 | 22 | nrexdv 3129 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁) |
| 24 | nnz 12499 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 25 | divides 16175 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | |
| 26 | 24, 25 | sylan2 593 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 27 | 26 | 3adant3 1132 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 28 | 23, 27 | mtbird 325 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ 𝑀 ∥ 𝑁) |
| 29 | 28 | 3expia 1121 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → ¬ 𝑀 ∥ 𝑁)) |
| 30 | 29 | con2d 134 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → ¬ 𝑁 < 𝑀)) |
| 31 | zre 12482 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 32 | nnre 12142 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 33 | lenlt 11201 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) | |
| 34 | 31, 32, 33 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
| 35 | 30, 34 | sylibrd 259 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∃wrex 3058 ifcif 4476 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 1c1 11017 · cmul 11021 < clt 11156 ≤ cle 11157 ℕcn 12135 ℤcz 12478 ∥ cdvds 16173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-n0 12392 df-z 12479 df-dvds 16174 |
| This theorem is referenced by: dvdsleabs 16232 dvdsssfz1 16239 fzm1ndvds 16243 fzo0dvdseq 16244 gcd1 16449 bezoutlem4 16463 dfgcd2 16467 gcdzeq 16473 bezoutr1 16490 lcmgcdlem 16527 qredeq 16578 isprm3 16604 prmdvdsfz 16626 isprm5 16628 maxprmfct 16630 isprm6 16635 prmfac1 16641 ncoprmlnprm 16649 pcpre1 16764 pcidlem 16794 pcprod 16817 pcfac 16821 pockthg 16828 prmreclem1 16838 prmreclem3 16840 prmreclem5 16842 1arith 16849 4sqlem11 16877 prmolelcmf 16970 gexcl2 19511 sylow1lem1 19520 sylow1lem5 19524 gexex 19775 ablfac1eu 19997 ablfaclem3 20011 znidomb 21508 dvdsflsumcom 27135 chtublem 27159 vmasum 27164 logfac2 27165 bposlem6 27237 lgsdir 27280 lgsdilem2 27281 lgsne0 27283 lgsqrlem2 27295 lgsquadlem2 27329 2sqlem8 27374 2sqblem 27379 2sqmod 27384 oddpwdc 34378 nn0prpw 36378 lcmineqlem20 42151 lcmineqlem22 42153 aks4d1p3 42181 aks4d1p6 42184 aks4d1p8d2 42188 aks4d1p8 42190 primrootlekpowne0 42208 aks6d1c2lem4 42230 grpods 42297 unitscyglem2 42299 unitscyglem4 42301 gcdle1d 42438 gcdle2d 42439 nznngen 44423 etransclem41 46387 |
| Copyright terms: Public domain | W3C validator |