MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsle Structured version   Visualization version   GIF version

Theorem dvdsle 16213
Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))

Proof of Theorem dvdsle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 5093 . . . . . . . . . . . . 13 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑁 < 𝑀𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1)))
2 oveq2 7349 . . . . . . . . . . . . . 14 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · 𝑀) = (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)))
32neeq1d 2985 . . . . . . . . . . . . 13 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑛 · 𝑀) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁))
41, 3imbi12d 344 . . . . . . . . . . . 12 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁) ↔ (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁)))
5 breq1 5092 . . . . . . . . . . . . 13 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) ↔ if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1)))
6 neeq2 2989 . . . . . . . . . . . . 13 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))
75, 6imbi12d 344 . . . . . . . . . . . 12 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))))
8 oveq1 7348 . . . . . . . . . . . . . 14 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) = (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)))
98neeq1d 2985 . . . . . . . . . . . . 13 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1) ↔ (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))
109imbi2d 340 . . . . . . . . . . . 12 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))))
11 1z 12494 . . . . . . . . . . . . . 14 1 ∈ ℤ
1211elimel 4543 . . . . . . . . . . . . 13 if(𝑀 ∈ ℤ, 𝑀, 1) ∈ ℤ
13 1nn 12128 . . . . . . . . . . . . . 14 1 ∈ ℕ
1413elimel 4543 . . . . . . . . . . . . 13 if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ
1511elimel 4543 . . . . . . . . . . . . 13 if(𝑛 ∈ ℤ, 𝑛, 1) ∈ ℤ
1612, 14, 15dvdslelem 16212 . . . . . . . . . . . 12 (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))
174, 7, 10, 16dedth3h 4534 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁))
18173expia 1121 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑛 ∈ ℤ → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁)))
1918com23 86 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁)))
20193impia 1117 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁))
2120imp 406 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁)
2221neneqd 2931 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁)
2322nrexdv 3125 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)
24 nnz 12481 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
25 divides 16157 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
2624, 25sylan2 593 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
27263adant3 1132 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
2823, 27mtbird 325 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
29283expia 1121 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → ¬ 𝑀𝑁))
3029con2d 134 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 → ¬ 𝑁 < 𝑀))
31 zre 12464 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32 nnre 12124 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
33 lenlt 11183 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3431, 32, 33syl2an 596 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3530, 34sylibrd 259 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wrex 3054  ifcif 4473   class class class wbr 5089  (class class class)co 7341  cr 10997  1c1 10999   · cmul 11003   < clt 11138  cle 11139  cn 12117  cz 12460  cdvds 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-dvds 16156
This theorem is referenced by:  dvdsleabs  16214  dvdsssfz1  16221  fzm1ndvds  16225  fzo0dvdseq  16226  gcd1  16431  bezoutlem4  16445  dfgcd2  16449  gcdzeq  16455  bezoutr1  16472  lcmgcdlem  16509  qredeq  16560  isprm3  16586  prmdvdsfz  16608  isprm5  16610  maxprmfct  16612  isprm6  16617  prmfac1  16623  ncoprmlnprm  16631  pcpre1  16746  pcidlem  16776  pcprod  16799  pcfac  16803  pockthg  16810  prmreclem1  16820  prmreclem3  16822  prmreclem5  16824  1arith  16831  4sqlem11  16859  prmolelcmf  16952  gexcl2  19494  sylow1lem1  19503  sylow1lem5  19507  gexex  19758  ablfac1eu  19980  ablfaclem3  19994  znidomb  21491  dvdsflsumcom  27118  chtublem  27142  vmasum  27147  logfac2  27148  bposlem6  27220  lgsdir  27263  lgsdilem2  27264  lgsne0  27266  lgsqrlem2  27278  lgsquadlem2  27312  2sqlem8  27357  2sqblem  27362  2sqmod  27367  oddpwdc  34357  nn0prpw  36336  lcmineqlem20  42060  lcmineqlem22  42062  aks4d1p3  42090  aks4d1p6  42093  aks4d1p8d2  42097  aks4d1p8  42099  primrootlekpowne0  42117  aks6d1c2lem4  42139  grpods  42206  unitscyglem2  42208  unitscyglem4  42210  gcdle1d  42342  gcdle2d  42343  nznngen  44328  etransclem41  46292
  Copyright terms: Public domain W3C validator