| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsle | Structured version Visualization version GIF version | ||
| Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . . . . . . . . . . . 13 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑁 < 𝑀 ↔ 𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 2 | oveq2 7398 | . . . . . . . . . . . . . 14 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · 𝑀) = (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 3 | 2 | neeq1d 2985 | . . . . . . . . . . . . 13 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑛 · 𝑀) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁)) |
| 4 | 1, 3 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁) ↔ (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁))) |
| 5 | breq1 5113 | . . . . . . . . . . . . 13 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) ↔ if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 6 | neeq2 2989 | . . . . . . . . . . . . 13 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))) | |
| 7 | 5, 6 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))) |
| 8 | oveq1 7397 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) = (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1))) | |
| 9 | 8 | neeq1d 2985 | . . . . . . . . . . . . 13 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1) ↔ (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))) |
| 10 | 9 | imbi2d 340 | . . . . . . . . . . . 12 ⊢ (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))) |
| 11 | 1z 12570 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℤ | |
| 12 | 11 | elimel 4561 | . . . . . . . . . . . . 13 ⊢ if(𝑀 ∈ ℤ, 𝑀, 1) ∈ ℤ |
| 13 | 1nn 12204 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℕ | |
| 14 | 13 | elimel 4561 | . . . . . . . . . . . . 13 ⊢ if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ |
| 15 | 11 | elimel 4561 | . . . . . . . . . . . . 13 ⊢ if(𝑛 ∈ ℤ, 𝑛, 1) ∈ ℤ |
| 16 | 12, 14, 15 | dvdslelem 16286 | . . . . . . . . . . . 12 ⊢ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) |
| 17 | 4, 7, 10, 16 | dedth3h 4552 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁)) |
| 18 | 17 | 3expia 1121 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑛 ∈ ℤ → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁))) |
| 19 | 18 | com23 86 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁))) |
| 20 | 19 | 3impia 1117 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁)) |
| 21 | 20 | imp 406 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁) |
| 22 | 21 | neneqd 2931 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁) |
| 23 | 22 | nrexdv 3129 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁) |
| 24 | nnz 12557 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 25 | divides 16231 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | |
| 26 | 24, 25 | sylan2 593 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 27 | 26 | 3adant3 1132 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 28 | 23, 27 | mtbird 325 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ 𝑀 ∥ 𝑁) |
| 29 | 28 | 3expia 1121 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → ¬ 𝑀 ∥ 𝑁)) |
| 30 | 29 | con2d 134 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → ¬ 𝑁 < 𝑀)) |
| 31 | zre 12540 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 32 | nnre 12200 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 33 | lenlt 11259 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) | |
| 34 | 31, 32, 33 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
| 35 | 30, 34 | sylibrd 259 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ifcif 4491 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 1c1 11076 · cmul 11080 < clt 11215 ≤ cle 11216 ℕcn 12193 ℤcz 12536 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-dvds 16230 |
| This theorem is referenced by: dvdsleabs 16288 dvdsssfz1 16295 fzm1ndvds 16299 fzo0dvdseq 16300 gcd1 16505 bezoutlem4 16519 dfgcd2 16523 gcdzeq 16529 bezoutr1 16546 lcmgcdlem 16583 qredeq 16634 isprm3 16660 prmdvdsfz 16682 isprm5 16684 maxprmfct 16686 isprm6 16691 prmfac1 16697 ncoprmlnprm 16705 pcpre1 16820 pcidlem 16850 pcprod 16873 pcfac 16877 pockthg 16884 prmreclem1 16894 prmreclem3 16896 prmreclem5 16898 1arith 16905 4sqlem11 16933 prmolelcmf 17026 gexcl2 19526 sylow1lem1 19535 sylow1lem5 19539 gexex 19790 ablfac1eu 20012 ablfaclem3 20026 znidomb 21478 dvdsflsumcom 27105 chtublem 27129 vmasum 27134 logfac2 27135 bposlem6 27207 lgsdir 27250 lgsdilem2 27251 lgsne0 27253 lgsqrlem2 27265 lgsquadlem2 27299 2sqlem8 27344 2sqblem 27349 2sqmod 27354 oddpwdc 34352 nn0prpw 36318 lcmineqlem20 42043 lcmineqlem22 42045 aks4d1p3 42073 aks4d1p6 42076 aks4d1p8d2 42080 aks4d1p8 42082 primrootlekpowne0 42100 aks6d1c2lem4 42122 grpods 42189 unitscyglem2 42191 unitscyglem4 42193 gcdle1d 42325 gcdle2d 42326 nznngen 44312 etransclem41 46280 |
| Copyright terms: Public domain | W3C validator |