MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsle Structured version   Visualization version   GIF version

Theorem dvdsle 15655
Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))

Proof of Theorem dvdsle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 5067 . . . . . . . . . . . . 13 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑁 < 𝑀𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1)))
2 oveq2 7158 . . . . . . . . . . . . . 14 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · 𝑀) = (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)))
32neeq1d 3080 . . . . . . . . . . . . 13 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑛 · 𝑀) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁))
41, 3imbi12d 346 . . . . . . . . . . . 12 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁) ↔ (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁)))
5 breq1 5066 . . . . . . . . . . . . 13 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) ↔ if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1)))
6 neeq2 3084 . . . . . . . . . . . . 13 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))
75, 6imbi12d 346 . . . . . . . . . . . 12 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))))
8 oveq1 7157 . . . . . . . . . . . . . 14 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) = (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)))
98neeq1d 3080 . . . . . . . . . . . . 13 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1) ↔ (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))
109imbi2d 342 . . . . . . . . . . . 12 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))))
11 1z 12006 . . . . . . . . . . . . . 14 1 ∈ ℤ
1211elimel 4537 . . . . . . . . . . . . 13 if(𝑀 ∈ ℤ, 𝑀, 1) ∈ ℤ
13 1nn 11643 . . . . . . . . . . . . . 14 1 ∈ ℕ
1413elimel 4537 . . . . . . . . . . . . 13 if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ
1511elimel 4537 . . . . . . . . . . . . 13 if(𝑛 ∈ ℤ, 𝑛, 1) ∈ ℤ
1612, 14, 15dvdslelem 15654 . . . . . . . . . . . 12 (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))
174, 7, 10, 16dedth3h 4528 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁))
18173expia 1115 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑛 ∈ ℤ → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁)))
1918com23 86 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁)))
20193impia 1111 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁))
2120imp 407 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁)
2221neneqd 3026 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁)
2322nrexdv 3275 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)
24 nnz 11998 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
25 divides 15604 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
2624, 25sylan2 592 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
27263adant3 1126 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
2823, 27mtbird 326 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
29283expia 1115 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → ¬ 𝑀𝑁))
3029con2d 136 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 → ¬ 𝑁 < 𝑀))
31 zre 11979 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32 nnre 11639 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
33 lenlt 10713 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3431, 32, 33syl2an 595 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3530, 34sylibrd 260 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wrex 3144  ifcif 4470   class class class wbr 5063  (class class class)co 7150  cr 10530  1c1 10532   · cmul 10536   < clt 10669  cle 10670  cn 11632  cz 11975  cdvds 15602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-dvds 15603
This theorem is referenced by:  dvdsleabs  15656  dvdsssfz1  15663  fzm1ndvds  15667  fzo0dvdseq  15668  n2dvds1OLD  15713  gcd1  15871  bezoutlem4  15885  dfgcd2  15889  gcdzeq  15897  bezoutr1  15908  lcmgcdlem  15945  qredeq  15996  isprm3  16022  prmdvdsfz  16044  isprm5  16046  maxprmfct  16048  isprm6  16053  prmfac1  16058  ncoprmlnprm  16063  pcpre1  16174  pcidlem  16203  pcprod  16226  pcfac  16230  pockthg  16237  prmreclem1  16247  prmreclem3  16249  prmreclem5  16251  1arith  16258  4sqlem11  16286  prmolelcmf  16379  gexcl2  18650  sylow1lem1  18659  sylow1lem5  18663  gexex  18909  ablfac1eu  19131  ablfaclem3  19145  znidomb  20643  dvdsflsumcom  25698  chtublem  25720  vmasum  25725  logfac2  25726  bposlem6  25798  lgsdir  25841  lgsdilem2  25842  lgsne0  25844  lgsqrlem2  25856  lgsquadlem2  25890  2sqlem8  25935  2sqblem  25940  2sqmod  25945  oddpwdc  31517  nn0prpw  33574  nznngen  40532  etransclem41  42445
  Copyright terms: Public domain W3C validator