HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3dif Structured version   Visualization version   GIF version

Theorem norm3dif 31083
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 20-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
norm3dif ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))))

Proof of Theorem norm3dif
StepHypRef Expression
1 fvoveq1 7447 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
2 fvoveq1 7447 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)))
32oveq1d 7439 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 𝐵))))
41, 3breq12d 5166 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ≤ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 𝐵)))))
5 oveq2 7432 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
65fveq2d 6905 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
7 oveq2 7432 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐶 𝐵) = (𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)))
87fveq2d 6905 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(𝐶 𝐵)) = (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))))
98oveq2d 7440 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 𝐵))) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)))))
106, 9breq12d 5166 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ≤ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 𝐵))) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ≤ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))))))
11 oveq2 7432 . . . . 5 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1211fveq2d 6905 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))))
13 fvoveq1 7447 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) = (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1412, 13oveq12d 7442 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)))) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) + (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))))
1514breq2d 5165 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ≤ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) + (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)))) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ≤ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) + (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))))
16 ifhvhv0 30955 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
17 ifhvhv0 30955 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
18 ifhvhv0 30955 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
1916, 17, 18norm3difi 31080 . 2 (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ≤ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) + (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
204, 10, 15, 19dedth3h 4593 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  ifcif 4533   class class class wbr 5153  cfv 6554  (class class class)co 7424   + caddc 11161  cle 11299  chba 30852  normcno 30856  0c0v 30857   cmv 30858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-hfvadd 30933  ax-hvcom 30934  ax-hvass 30935  ax-hv0cl 30936  ax-hvaddid 30937  ax-hfvmul 30938  ax-hvmulid 30939  ax-hvmulass 30940  ax-hvdistr2 30942  ax-hvmul0 30943  ax-hfi 31012  ax-his1 31015  ax-his2 31016  ax-his3 31017  ax-his4 31018
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-hnorm 30901  df-hvsub 30904
This theorem is referenced by:  norm3dif2  31084
  Copyright terms: Public domain W3C validator