![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm3dif | Structured version Visualization version GIF version |
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 20-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm3dif | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 6933 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
2 | fvoveq1 6933 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶))) | |
3 | 2 | oveq1d 6925 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
4 | 1, 3 | breq12d 4888 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))))) |
5 | oveq2 6918 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6441 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | oveq2 6918 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐶 −ℎ 𝐵) = (𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | fveq2d 6441 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(𝐶 −ℎ 𝐵)) = (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 8 | oveq2d 6926 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | 6, 9 | breq12d 4888 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
11 | oveq2 6918 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
12 | 11 | fveq2d 6441 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
13 | fvoveq1 6933 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) | |
14 | 12, 13 | oveq12d 6928 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
15 | 14 | breq2d 4887 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
16 | ifhvhv0 28430 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
17 | ifhvhv0 28430 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
18 | ifhvhv0 28430 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
19 | 16, 17, 18 | norm3difi 28555 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
20 | 4, 10, 15, 19 | dedth3h 4366 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ifcif 4308 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 + caddc 10262 ≤ cle 10399 ℋchba 28327 normℎcno 28331 0ℎc0v 28332 −ℎ cmv 28333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-hfvadd 28408 ax-hvcom 28409 ax-hvass 28410 ax-hv0cl 28411 ax-hvaddid 28412 ax-hfvmul 28413 ax-hvmulid 28414 ax-hvmulass 28415 ax-hvdistr2 28417 ax-hvmul0 28418 ax-hfi 28487 ax-his1 28490 ax-his2 28491 ax-his3 28492 ax-his4 28493 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-hnorm 28376 df-hvsub 28379 |
This theorem is referenced by: norm3dif2 28559 |
Copyright terms: Public domain | W3C validator |