![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm3dif | Structured version Visualization version GIF version |
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 20-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm3dif | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7447 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
2 | fvoveq1 7447 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶))) | |
3 | 2 | oveq1d 7439 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
4 | 1, 3 | breq12d 5166 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))))) |
5 | oveq2 7432 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6905 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | oveq2 7432 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐶 −ℎ 𝐵) = (𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | fveq2d 6905 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(𝐶 −ℎ 𝐵)) = (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 8 | oveq2d 7440 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | 6, 9 | breq12d 5166 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
11 | oveq2 7432 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
12 | 11 | fveq2d 6905 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
13 | fvoveq1 7447 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) | |
14 | 12, 13 | oveq12d 7442 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
15 | 14 | breq2d 5165 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
16 | ifhvhv0 30955 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
17 | ifhvhv0 30955 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
18 | ifhvhv0 30955 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
19 | 16, 17, 18 | norm3difi 31080 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
20 | 4, 10, 15, 19 | dedth3h 4593 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ifcif 4533 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 + caddc 11161 ≤ cle 11299 ℋchba 30852 normℎcno 30856 0ℎc0v 30857 −ℎ cmv 30858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-hfvadd 30933 ax-hvcom 30934 ax-hvass 30935 ax-hv0cl 30936 ax-hvaddid 30937 ax-hfvmul 30938 ax-hvmulid 30939 ax-hvmulass 30940 ax-hvdistr2 30942 ax-hvmul0 30943 ax-hfi 31012 ax-his1 31015 ax-his2 31016 ax-his3 31017 ax-his4 31018 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-hnorm 30901 df-hvsub 30904 |
This theorem is referenced by: norm3dif2 31084 |
Copyright terms: Public domain | W3C validator |