Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > norm3dif | Structured version Visualization version GIF version |
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 20-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm3dif | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7298 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
2 | fvoveq1 7298 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶))) | |
3 | 2 | oveq1d 7290 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
4 | 1, 3 | breq12d 5087 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))))) |
5 | oveq2 7283 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6778 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | oveq2 7283 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐶 −ℎ 𝐵) = (𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | fveq2d 6778 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(𝐶 −ℎ 𝐵)) = (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 8 | oveq2d 7291 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | 6, 9 | breq12d 5087 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
11 | oveq2 7283 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | |
12 | 11 | fveq2d 6778 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
13 | fvoveq1 7298 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) | |
14 | 12, 13 | oveq12d 7293 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
15 | 14 | breq2d 5086 | . 2 ⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
16 | ifhvhv0 29384 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
17 | ifhvhv0 29384 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
18 | ifhvhv0 29384 | . . 3 ⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈ ℋ | |
19 | 16, 17, 18 | norm3difi 29509 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) + (normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
20 | 4, 10, 15, 19 | dedth3h 4519 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ifcif 4459 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 + caddc 10874 ≤ cle 11010 ℋchba 29281 normℎcno 29285 0ℎc0v 29286 −ℎ cmv 29287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr2 29371 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-hnorm 29330 df-hvsub 29333 |
This theorem is referenced by: norm3dif2 29513 |
Copyright terms: Public domain | W3C validator |