MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem2 Structured version   Visualization version   GIF version

Theorem faclbnd4lem2 13657
Description: Lemma for faclbnd4 13660. Use the weak deduction theorem to convert the hypotheses of faclbnd4lem1 13656 to antecedents. (Contributed by NM, 23-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem2 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))))

Proof of Theorem faclbnd4lem2
StepHypRef Expression
1 oveq1 7166 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀↑(𝑁 − 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1)))
21oveq2d 7175 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) = (((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))))
3 id 22 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → 𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1))
4 oveq1 7166 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀 + 𝐾) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))
53, 4oveq12d 7177 . . . . . 6 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀↑(𝑀 + 𝐾)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾)))
65oveq2d 7175 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) = ((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))))
76oveq1d 7174 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) = (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))))
82, 7breq12d 5082 . . 3 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) ↔ (((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1)))))
9 oveq1 7166 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀𝑁) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁))
109oveq2d 7175 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) = ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)))
11 oveq1 7166 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀 + (𝐾 + 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))
123, 11oveq12d 7177 . . . . . 6 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀↑(𝑀 + (𝐾 + 1))) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1))))
1312oveq2d 7175 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) = ((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))))
1413oveq1d 7174 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁)) = (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)))
1510, 14breq12d 5082 . . 3 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁)) ↔ ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁))))
168, 15imbi12d 347 . 2 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))) ↔ ((((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)))))
17 oveq2 7167 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((𝑁 − 1)↑𝐾) = ((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)))
1817oveq1d 7174 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) = (((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))))
19 oveq1 7166 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (𝐾↑2) = (if(𝐾 ∈ ℕ0, 𝐾, 1)↑2))
2019oveq2d 7175 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (2↑(𝐾↑2)) = (2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)))
21 oveq2 7167 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))
2221oveq2d 7175 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1))))
2320, 22oveq12d 7177 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) = ((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))))
2423oveq1d 7174 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) = (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))))
2518, 24breq12d 5082 . . 3 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) ↔ (((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1)))))
26 oveq1 7166 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (𝐾 + 1) = (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1))
2726oveq2d 7175 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (𝑁↑(𝐾 + 1)) = (𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))
2827oveq1d 7174 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) = ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)))
2926oveq1d 7174 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((𝐾 + 1)↑2) = ((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2))
3029oveq2d 7175 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (2↑((𝐾 + 1)↑2)) = (2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)))
3126oveq2d 7175 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))
3231oveq2d 7175 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1))) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1))))
3330, 32oveq12d 7177 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) = ((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))))
3433oveq1d 7174 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)) = (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)))
3528, 34breq12d 5082 . . 3 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)) ↔ ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁))))
3625, 35imbi12d 347 . 2 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁))) ↔ ((((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) → ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)))))
37 oveq1 7166 . . . . . 6 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 − 1) = (if(𝑁 ∈ ℕ, 𝑁, 1) − 1))
3837oveq1d 7174 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) = ((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)))
3937oveq2d 7175 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1)))
4038, 39oveq12d 7177 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) = (((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))))
41 fvoveq1 7182 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (!‘(𝑁 − 1)) = (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1)))
4241oveq2d 7175 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) = (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))))
4340, 42breq12d 5082 . . 3 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) ↔ (((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1)))))
44 oveq1 7166 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) = (if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))
45 oveq2 7167 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1)))
4644, 45oveq12d 7177 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) = ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))))
47 fveq2 6673 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (!‘𝑁) = (!‘if(𝑁 ∈ ℕ, 𝑁, 1)))
4847oveq2d 7175 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)) = (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1))))
4946, 48breq12d 5082 . . 3 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)) ↔ ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1)))))
5043, 49imbi12d 347 . 2 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) → ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁))) ↔ ((((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) → ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1))))))
51 1nn 11652 . . . 4 1 ∈ ℕ
5251elimel 4537 . . 3 if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ
53 1nn0 11916 . . . 4 1 ∈ ℕ0
5453elimel 4537 . . 3 if(𝐾 ∈ ℕ0, 𝐾, 1) ∈ ℕ0
5553elimel 4537 . . 3 if(𝑀 ∈ ℕ0, 𝑀, 1) ∈ ℕ0
5652, 54, 55faclbnd4lem1 13656 . 2 ((((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) → ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1))))
5716, 36, 50, 56dedth3h 4528 1 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1536  wcel 2113  ifcif 4470   class class class wbr 5069  cfv 6358  (class class class)co 7159  1c1 10541   + caddc 10543   · cmul 10545  cle 10679  cmin 10873  cn 11641  2c2 11695  0cn0 11900  cexp 13432  !cfa 13636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-fac 13637
This theorem is referenced by:  faclbnd4lem4  13659
  Copyright terms: Public domain W3C validator