MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddm Structured version   Visualization version   GIF version

Theorem gcdaddm 16230
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))

Proof of Theorem gcdaddm
StepHypRef Expression
1 oveq1 7278 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀))
21oveq1d 7286 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝐾 · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))
32oveq2d 7287 . . . 4 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)))
43eqeq2d 2751 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ (𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))))
5 oveq1 7278 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁))
6 id 22 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0))
7 oveq2 7279 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)))
87oveq1d 7286 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))
96, 8oveq12d 7289 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)))
105, 9eqeq12d 2756 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))))
11 oveq2 7279 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)))
12 oveq2 7279 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
1312oveq2d 7287 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0))))
1411, 13eqeq12d 2756 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))))
15 0z 12330 . . . . 5 0 ∈ ℤ
1615elimel 4534 . . . 4 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
1715elimel 4534 . . . 4 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
1815elimel 4534 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 0) ∈ ℤ
1916, 17, 18gcdaddmlem 16229 . . 3 (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
204, 10, 14, 19dedth3h 4525 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
21 zcn 12324 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22 zcn 12324 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
23 mulcl 10956 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 · 𝑀) ∈ ℂ)
2421, 22, 23syl2an 596 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℂ)
25 zcn 12324 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
26 addcom 11161 . . . . 5 (((𝐾 · 𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2724, 25, 26syl2an 596 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
28273impa 1109 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2928oveq2d 7287 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
3020, 29eqtrd 2780 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  ifcif 4465  (class class class)co 7271  cc 10870  0cc0 10872   + caddc 10875   · cmul 10877  cz 12319   gcd cgcd 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200
This theorem is referenced by:  gcdadd  16231  gcdid  16232  modgcd  16238  gcdmultipled  16240  gcdmultipleOLD  16258  pythagtriplem4  16518  gcdi  16772  pgpfac1lem2  19676  gcdaddmzz2nni  40000  lcmineqlem19  40052
  Copyright terms: Public domain W3C validator