MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddm Structured version   Visualization version   GIF version

Theorem gcdaddm 16405
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))

Proof of Theorem gcdaddm
StepHypRef Expression
1 oveq1 7364 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀))
21oveq1d 7372 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝐾 · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))
32oveq2d 7373 . . . 4 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)))
43eqeq2d 2747 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ (𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))))
5 oveq1 7364 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁))
6 id 22 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0))
7 oveq2 7365 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)))
87oveq1d 7372 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))
96, 8oveq12d 7375 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)))
105, 9eqeq12d 2752 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))))
11 oveq2 7365 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)))
12 oveq2 7365 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
1312oveq2d 7373 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0))))
1411, 13eqeq12d 2752 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))))
15 0z 12510 . . . . 5 0 ∈ ℤ
1615elimel 4555 . . . 4 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
1715elimel 4555 . . . 4 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
1815elimel 4555 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 0) ∈ ℤ
1916, 17, 18gcdaddmlem 16404 . . 3 (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
204, 10, 14, 19dedth3h 4546 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
21 zcn 12504 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22 zcn 12504 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
23 mulcl 11135 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 · 𝑀) ∈ ℂ)
2421, 22, 23syl2an 596 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℂ)
25 zcn 12504 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
26 addcom 11341 . . . . 5 (((𝐾 · 𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2724, 25, 26syl2an 596 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
28273impa 1110 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2928oveq2d 7373 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
3020, 29eqtrd 2776 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ifcif 4486  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054   · cmul 11056  cz 12499   gcd cgcd 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375
This theorem is referenced by:  gcdadd  16406  gcdid  16407  modgcd  16413  gcdmultipled  16415  pythagtriplem4  16691  gcdi  16945  pgpfac1lem2  19854  gcdaddmzz2nni  40452  lcmineqlem19  40504
  Copyright terms: Public domain W3C validator