MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddm Structured version   Visualization version   GIF version

Theorem gcdaddm 15873
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))

Proof of Theorem gcdaddm
StepHypRef Expression
1 oveq1 7163 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀))
21oveq1d 7171 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝐾 · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))
32oveq2d 7172 . . . 4 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)))
43eqeq2d 2832 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ (𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))))
5 oveq1 7163 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁))
6 id 22 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0))
7 oveq2 7164 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)))
87oveq1d 7171 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))
96, 8oveq12d 7174 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)))
105, 9eqeq12d 2837 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))))
11 oveq2 7164 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)))
12 oveq2 7164 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
1312oveq2d 7172 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0))))
1411, 13eqeq12d 2837 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))))
15 0z 11993 . . . . 5 0 ∈ ℤ
1615elimel 4534 . . . 4 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
1715elimel 4534 . . . 4 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
1815elimel 4534 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 0) ∈ ℤ
1916, 17, 18gcdaddmlem 15872 . . 3 (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
204, 10, 14, 19dedth3h 4525 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
21 zcn 11987 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22 zcn 11987 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
23 mulcl 10621 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 · 𝑀) ∈ ℂ)
2421, 22, 23syl2an 597 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℂ)
25 zcn 11987 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
26 addcom 10826 . . . . 5 (((𝐾 · 𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2724, 25, 26syl2an 597 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
28273impa 1106 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2928oveq2d 7172 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
3020, 29eqtrd 2856 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  ifcif 4467  (class class class)co 7156  cc 10535  0cc0 10537   + caddc 10540   · cmul 10542  cz 11982   gcd cgcd 15843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844
This theorem is referenced by:  gcdadd  15874  gcdid  15875  modgcd  15880  gcdmultipled  15882  gcdmultipleOLD  15900  pythagtriplem4  16156  gcdi  16409  pgpfac1lem2  19197
  Copyright terms: Public domain W3C validator