| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrdg | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| nfrdg.1 | ⊢ Ⅎ𝑥𝐹 |
| nfrdg.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrdg | ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rdg 8335 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 2 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑥V | |
| 3 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝑔 = ∅ | |
| 4 | nfrdg.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 5 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥Lim dom 𝑔 | |
| 6 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥∪ ran 𝑔 | |
| 7 | nfrdg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
| 8 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑔‘∪ dom 𝑔) | |
| 9 | 7, 8 | nffv 6838 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘∪ dom 𝑔)) |
| 10 | 5, 6, 9 | nfif 4505 | . . . . 5 ⊢ Ⅎ𝑥if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) |
| 11 | 3, 4, 10 | nfif 4505 | . . . 4 ⊢ Ⅎ𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) |
| 12 | 2, 11 | nfmpt 5191 | . . 3 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) |
| 13 | 12 | nfrecs 8300 | . 2 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
| 14 | 1, 13 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Ⅎwnfc 2880 Vcvv 3437 ∅c0 4282 ifcif 4474 ∪ cuni 4858 ↦ cmpt 5174 dom cdm 5619 ran crn 5620 Lim wlim 6312 ‘cfv 6486 recscrecs 8296 reccrdg 8334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7355 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 |
| This theorem is referenced by: rdgsucmptf 8353 rdgsucmptnf 8354 frsucmpt 8363 frsucmptn 8364 ttrclselem1 9622 ttrclselem2 9623 nfseq 13920 nfseqs 28218 rdgssun 37443 exrecfnlem 37444 finxpreclem6 37461 |
| Copyright terms: Public domain | W3C validator |