| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrdg | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| nfrdg.1 | ⊢ Ⅎ𝑥𝐹 |
| nfrdg.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrdg | ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rdg 8381 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥V | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝑔 = ∅ | |
| 4 | nfrdg.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 5 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥Lim dom 𝑔 | |
| 6 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥∪ ran 𝑔 | |
| 7 | nfrdg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
| 8 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑔‘∪ dom 𝑔) | |
| 9 | 7, 8 | nffv 6871 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘∪ dom 𝑔)) |
| 10 | 5, 6, 9 | nfif 4522 | . . . . 5 ⊢ Ⅎ𝑥if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) |
| 11 | 3, 4, 10 | nfif 4522 | . . . 4 ⊢ Ⅎ𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) |
| 12 | 2, 11 | nfmpt 5208 | . . 3 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) |
| 13 | 12 | nfrecs 8346 | . 2 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
| 14 | 1, 13 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Ⅎwnfc 2877 Vcvv 3450 ∅c0 4299 ifcif 4491 ∪ cuni 4874 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 Lim wlim 6336 ‘cfv 6514 recscrecs 8342 reccrdg 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fv 6522 df-ov 7393 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 |
| This theorem is referenced by: rdgsucmptf 8399 rdgsucmptnf 8400 frsucmpt 8409 frsucmptn 8410 ttrclselem1 9685 ttrclselem2 9686 nfseq 13983 nfseqs 28188 rdgssun 37373 exrecfnlem 37374 finxpreclem6 37391 |
| Copyright terms: Public domain | W3C validator |