![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrdg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
nfrdg.1 | ⊢ Ⅎ𝑥𝐹 |
nfrdg.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrdg | ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rdg 8466 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥V | |
3 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑥 𝑔 = ∅ | |
4 | nfrdg.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
5 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥Lim dom 𝑔 | |
6 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥∪ ran 𝑔 | |
7 | nfrdg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
8 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑔‘∪ dom 𝑔) | |
9 | 7, 8 | nffv 6930 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘∪ dom 𝑔)) |
10 | 5, 6, 9 | nfif 4578 | . . . . 5 ⊢ Ⅎ𝑥if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) |
11 | 3, 4, 10 | nfif 4578 | . . . 4 ⊢ Ⅎ𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) |
12 | 2, 11 | nfmpt 5273 | . . 3 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) |
13 | 12 | nfrecs 8431 | . 2 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
14 | 1, 13 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Ⅎwnfc 2893 Vcvv 3488 ∅c0 4352 ifcif 4548 ∪ cuni 4931 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 Lim wlim 6396 ‘cfv 6573 recscrecs 8426 reccrdg 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: rdgsucmptf 8484 rdgsucmptnf 8485 frsucmpt 8494 frsucmptn 8495 ttrclselem1 9794 ttrclselem2 9795 nfseq 14062 nfseqs 28311 rdgssun 37344 exrecfnlem 37345 finxpreclem6 37362 |
Copyright terms: Public domain | W3C validator |