Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrdg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
nfrdg.1 | ⊢ Ⅎ𝑥𝐹 |
nfrdg.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrdg | ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rdg 8212 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥V | |
3 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥 𝑔 = ∅ | |
4 | nfrdg.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
5 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑥Lim dom 𝑔 | |
6 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥∪ ran 𝑔 | |
7 | nfrdg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
8 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑔‘∪ dom 𝑔) | |
9 | 7, 8 | nffv 6766 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘∪ dom 𝑔)) |
10 | 5, 6, 9 | nfif 4486 | . . . . 5 ⊢ Ⅎ𝑥if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) |
11 | 3, 4, 10 | nfif 4486 | . . . 4 ⊢ Ⅎ𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) |
12 | 2, 11 | nfmpt 5177 | . . 3 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) |
13 | 12 | nfrecs 8177 | . 2 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
14 | 1, 13 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Ⅎwnfc 2886 Vcvv 3422 ∅c0 4253 ifcif 4456 ∪ cuni 4836 ↦ cmpt 5153 dom cdm 5580 ran crn 5581 Lim wlim 6252 ‘cfv 6418 recscrecs 8172 reccrdg 8211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 |
This theorem is referenced by: rdgsucmptf 8230 rdgsucmptnf 8231 frsucmpt 8239 frsucmptn 8240 trpredlem1 9405 trpredrec 9415 nfseq 13659 ttrclselem1 33711 ttrclselem2 33712 rdgssun 35476 exrecfnlem 35477 finxpreclem6 35494 |
Copyright terms: Public domain | W3C validator |