MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrdg Structured version   Visualization version   GIF version

Theorem nfrdg 7718
Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypotheses
Ref Expression
nfrdg.1 𝑥𝐹
nfrdg.2 𝑥𝐴
Assertion
Ref Expression
nfrdg 𝑥rec(𝐹, 𝐴)

Proof of Theorem nfrdg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-rdg 7714 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
2 nfcv 2907 . . . 4 𝑥V
3 nfv 2009 . . . . 5 𝑥 𝑔 = ∅
4 nfrdg.2 . . . . 5 𝑥𝐴
5 nfv 2009 . . . . . 6 𝑥Lim dom 𝑔
6 nfcv 2907 . . . . . 6 𝑥 ran 𝑔
7 nfrdg.1 . . . . . . 7 𝑥𝐹
8 nfcv 2907 . . . . . . 7 𝑥(𝑔 dom 𝑔)
97, 8nffv 6389 . . . . . 6 𝑥(𝐹‘(𝑔 dom 𝑔))
105, 6, 9nfif 4274 . . . . 5 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))
113, 4, 10nfif 4274 . . . 4 𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))
122, 11nfmpt 4907 . . 3 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
1312nfrecs 7679 . 2 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
141, 13nfcxfr 2905 1 𝑥rec(𝐹, 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  wnfc 2894  Vcvv 3350  c0 4081  ifcif 4245   cuni 4596  cmpt 4890  dom cdm 5279  ran crn 5280  Lim wlim 5911  cfv 6070  recscrecs 7675  reccrdg 7713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-xp 5285  df-cnv 5287  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-iota 6033  df-fv 6078  df-wrecs 7614  df-recs 7676  df-rdg 7714
This theorem is referenced by:  rdgsucmptf  7732  rdgsucmptnf  7733  frsucmpt  7741  frsucmptn  7742  nfseq  13023  trpredlem1  32191  trpredrec  32202  finxpreclem6  33687
  Copyright terms: Public domain W3C validator