MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrdg Structured version   Visualization version   GIF version

Theorem nfrdg 8245
Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypotheses
Ref Expression
nfrdg.1 𝑥𝐹
nfrdg.2 𝑥𝐴
Assertion
Ref Expression
nfrdg 𝑥rec(𝐹, 𝐴)

Proof of Theorem nfrdg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-rdg 8241 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
2 nfcv 2907 . . . 4 𝑥V
3 nfv 1917 . . . . 5 𝑥 𝑔 = ∅
4 nfrdg.2 . . . . 5 𝑥𝐴
5 nfv 1917 . . . . . 6 𝑥Lim dom 𝑔
6 nfcv 2907 . . . . . 6 𝑥 ran 𝑔
7 nfrdg.1 . . . . . . 7 𝑥𝐹
8 nfcv 2907 . . . . . . 7 𝑥(𝑔 dom 𝑔)
97, 8nffv 6784 . . . . . 6 𝑥(𝐹‘(𝑔 dom 𝑔))
105, 6, 9nfif 4489 . . . . 5 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))
113, 4, 10nfif 4489 . . . 4 𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))
122, 11nfmpt 5181 . . 3 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
1312nfrecs 8206 . 2 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
141, 13nfcxfr 2905 1 𝑥rec(𝐹, 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wnfc 2887  Vcvv 3432  c0 4256  ifcif 4459   cuni 4839  cmpt 5157  dom cdm 5589  ran crn 5590  Lim wlim 6267  cfv 6433  recscrecs 8201  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fv 6441  df-ov 7278  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by:  rdgsucmptf  8259  rdgsucmptnf  8260  frsucmpt  8269  frsucmptn  8270  ttrclselem1  9483  ttrclselem2  9484  nfseq  13731  rdgssun  35549  exrecfnlem  35550  finxpreclem6  35567
  Copyright terms: Public domain W3C validator