| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrdg | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| nfrdg.1 | ⊢ Ⅎ𝑥𝐹 |
| nfrdg.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrdg | ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rdg 8429 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥V | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝑔 = ∅ | |
| 4 | nfrdg.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 5 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥Lim dom 𝑔 | |
| 6 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑥∪ ran 𝑔 | |
| 7 | nfrdg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
| 8 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑔‘∪ dom 𝑔) | |
| 9 | 7, 8 | nffv 6891 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘∪ dom 𝑔)) |
| 10 | 5, 6, 9 | nfif 4536 | . . . . 5 ⊢ Ⅎ𝑥if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) |
| 11 | 3, 4, 10 | nfif 4536 | . . . 4 ⊢ Ⅎ𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) |
| 12 | 2, 11 | nfmpt 5224 | . . 3 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) |
| 13 | 12 | nfrecs 8394 | . 2 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
| 14 | 1, 13 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Ⅎwnfc 2884 Vcvv 3464 ∅c0 4313 ifcif 4505 ∪ cuni 4888 ↦ cmpt 5206 dom cdm 5659 ran crn 5660 Lim wlim 6358 ‘cfv 6536 recscrecs 8389 reccrdg 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fv 6544 df-ov 7413 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 |
| This theorem is referenced by: rdgsucmptf 8447 rdgsucmptnf 8448 frsucmpt 8457 frsucmptn 8458 ttrclselem1 9744 ttrclselem2 9745 nfseq 14034 nfseqs 28238 rdgssun 37401 exrecfnlem 37402 finxpreclem6 37419 |
| Copyright terms: Public domain | W3C validator |