![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrdg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
nfrdg.1 | ⊢ Ⅎ𝑥𝐹 |
nfrdg.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrdg | ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rdg 8449 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥V | |
3 | nfv 1912 | . . . . 5 ⊢ Ⅎ𝑥 𝑔 = ∅ | |
4 | nfrdg.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
5 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑥Lim dom 𝑔 | |
6 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑥∪ ran 𝑔 | |
7 | nfrdg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
8 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑔‘∪ dom 𝑔) | |
9 | 7, 8 | nffv 6917 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘∪ dom 𝑔)) |
10 | 5, 6, 9 | nfif 4561 | . . . . 5 ⊢ Ⅎ𝑥if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) |
11 | 3, 4, 10 | nfif 4561 | . . . 4 ⊢ Ⅎ𝑥if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) |
12 | 2, 11 | nfmpt 5255 | . . 3 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) |
13 | 12 | nfrecs 8414 | . 2 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
14 | 1, 13 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥rec(𝐹, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Ⅎwnfc 2888 Vcvv 3478 ∅c0 4339 ifcif 4531 ∪ cuni 4912 ↦ cmpt 5231 dom cdm 5689 ran crn 5690 Lim wlim 6387 ‘cfv 6563 recscrecs 8409 reccrdg 8448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fv 6571 df-ov 7434 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 |
This theorem is referenced by: rdgsucmptf 8467 rdgsucmptnf 8468 frsucmpt 8477 frsucmptn 8478 ttrclselem1 9763 ttrclselem2 9764 nfseq 14049 nfseqs 28308 rdgssun 37361 exrecfnlem 37362 finxpreclem6 37379 |
Copyright terms: Public domain | W3C validator |