Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrdgg Structured version   Visualization version   GIF version

Theorem csbrdgg 37384
Description: Move class substitution in and out of the recursive function generator. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbrdgg (𝐴𝑉𝐴 / 𝑥rec(𝐹, 𝐼) = rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼))

Proof of Theorem csbrdgg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 csbrecsg 37383 . . 3 (𝐴𝑉𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
2 csbmpt2 5503 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
3 csbif 4534 . . . . . . 7 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if([𝐴 / 𝑥]𝑔 = ∅, 𝐴 / 𝑥𝐼, 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))
4 sbcg 3811 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑔 = ∅ ↔ 𝑔 = ∅))
5 csbif 4534 . . . . . . . . 9 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if([𝐴 / 𝑥]Lim dom 𝑔, 𝐴 / 𝑥 ran 𝑔, 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)))
6 sbcg 3811 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]Lim dom 𝑔 ↔ Lim dom 𝑔))
7 csbconstg 3866 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥 ran 𝑔 = ran 𝑔)
8 csbfv12 6876 . . . . . . . . . . 11 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑔 dom 𝑔))
9 csbconstg 3866 . . . . . . . . . . . 12 (𝐴𝑉𝐴 / 𝑥(𝑔 dom 𝑔) = (𝑔 dom 𝑔))
109fveq2d 6835 . . . . . . . . . . 11 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))
118, 10eqtrid 2780 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))
126, 7, 11ifbieq12d 4505 . . . . . . . . 9 (𝐴𝑉 → if([𝐴 / 𝑥]Lim dom 𝑔, 𝐴 / 𝑥 ran 𝑔, 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))
135, 12eqtrid 2780 . . . . . . . 8 (𝐴𝑉𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))
144, 13ifbieq2d 4503 . . . . . . 7 (𝐴𝑉 → if([𝐴 / 𝑥]𝑔 = ∅, 𝐴 / 𝑥𝐼, 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))
153, 14eqtrid 2780 . . . . . 6 (𝐴𝑉𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))
1615mpteq2dv 5189 . . . . 5 (𝐴𝑉 → (𝑔 ∈ V ↦ 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
172, 16eqtrd 2768 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
18 recseq 8302 . . . 4 (𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))) → recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
1917, 18syl 17 . . 3 (𝐴𝑉 → recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
201, 19eqtrd 2768 . 2 (𝐴𝑉𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
21 df-rdg 8338 . . 3 rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
2221csbeq2i 3855 . 2 𝐴 / 𝑥rec(𝐹, 𝐼) = 𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
23 df-rdg 8338 . 2 rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
2420, 22, 233eqtr4g 2793 1 (𝐴𝑉𝐴 / 𝑥rec(𝐹, 𝐼) = rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3438  [wsbc 3738  csb 3847  c0 4284  ifcif 4476   cuni 4860  cmpt 5176  dom cdm 5621  ran crn 5622  Lim wlim 6315  cfv 6489  recscrecs 8299  reccrdg 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5627  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-iota 6445  df-fv 6497  df-ov 7358  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  csbfinxpg  37443
  Copyright terms: Public domain W3C validator