Step | Hyp | Ref
| Expression |
1 | | csbrecsg 35499 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) =
recs(⦋𝐴 /
𝑥⦌(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))))) |
2 | | csbmpt2 5471 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ ⦋𝐴 / 𝑥⦌if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
3 | | csbif 4516 |
. . . . . . 7
⊢
⦋𝐴 /
𝑥⦌if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if([𝐴 / 𝑥]𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, ⦋𝐴 / 𝑥⦌if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) |
4 | | sbcg 3795 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑔 = ∅ ↔ 𝑔 = ∅)) |
5 | | csbif 4516 |
. . . . . . . . 9
⊢
⦋𝐴 /
𝑥⦌if(Lim dom
𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if([𝐴 / 𝑥]Lim dom 𝑔, ⦋𝐴 / 𝑥⦌∪
ran 𝑔, ⦋𝐴 / 𝑥⦌(𝐹‘(𝑔‘∪ dom 𝑔))) |
6 | | sbcg 3795 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Lim dom 𝑔 ↔ Lim dom 𝑔)) |
7 | | csbconstg 3851 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
ran 𝑔 = ∪ ran 𝑔) |
8 | | csbfv12 6817 |
. . . . . . . . . . 11
⊢
⦋𝐴 /
𝑥⦌(𝐹‘(𝑔‘∪ dom 𝑔)) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌(𝑔‘∪ dom 𝑔)) |
9 | | csbconstg 3851 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑔‘∪ dom 𝑔) = (𝑔‘∪ dom 𝑔)) |
10 | 9 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌(𝑔‘∪ dom 𝑔)) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))) |
11 | 8, 10 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹‘(𝑔‘∪ dom 𝑔)) = (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))) |
12 | 6, 7, 11 | ifbieq12d 4487 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → if([𝐴 / 𝑥]Lim dom 𝑔, ⦋𝐴 / 𝑥⦌∪
ran 𝑔, ⦋𝐴 / 𝑥⦌(𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom 𝑔, ∪
ran 𝑔,
(⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔)))) |
13 | 5, 12 | eqtrid 2790 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom 𝑔, ∪
ran 𝑔,
(⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔)))) |
14 | 4, 13 | ifbieq2d 4485 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → if([𝐴 / 𝑥]𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, ⦋𝐴 / 𝑥⦌if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))))) |
15 | 3, 14 | eqtrid 2790 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))))) |
16 | 15 | mpteq2dv 5176 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑔 ∈ V ↦ ⦋𝐴 / 𝑥⦌if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔)))))) |
17 | 2, 16 | eqtrd 2778 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔)))))) |
18 | | recseq 8205 |
. . . 4
⊢
(⦋𝐴 /
𝑥⦌(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))))) →
recs(⦋𝐴 /
𝑥⦌(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))))))) |
19 | 17, 18 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → recs(⦋𝐴 / 𝑥⦌(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))))))) |
20 | 1, 19 | eqtrd 2778 |
. 2
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔))))))) |
21 | | df-rdg 8241 |
. . 3
⊢ rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
22 | 21 | csbeq2i 3840 |
. 2
⊢
⦋𝐴 /
𝑥⦌rec(𝐹, 𝐼) = ⦋𝐴 / 𝑥⦌recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
23 | | df-rdg 8241 |
. 2
⊢
rec(⦋𝐴
/ 𝑥⦌𝐹, ⦋𝐴 / 𝑥⦌𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, ⦋𝐴 / 𝑥⦌𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (⦋𝐴 / 𝑥⦌𝐹‘(𝑔‘∪ dom 𝑔)))))) |
24 | 20, 22, 23 | 3eqtr4g 2803 |
1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌rec(𝐹, 𝐼) = rec(⦋𝐴 / 𝑥⦌𝐹, ⦋𝐴 / 𝑥⦌𝐼)) |