![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oalim | Structured version Visualization version GIF version |
Description: Ordinal addition with a limit ordinal. Definition 8.1 of [TakeutiZaring] p. 56. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oalim | ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6428 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
3 | 1, 2 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
4 | rdglim2a 8439 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
6 | oav 8517 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵)) | |
7 | onelon 6389 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
8 | oav 8517 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) | |
9 | 7, 8 | sylan2 592 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
10 | 9 | anassrs 467 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ 𝐵) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
11 | 10 | iuneq2dv 5021 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
12 | 6, 11 | eqeq12d 2747 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))) |
13 | 12 | adantrr 714 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))) |
14 | 5, 13 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
15 | 3, 14 | sylan2 592 | 1 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ ciun 4997 ↦ cmpt 5231 Oncon0 6364 Lim wlim 6365 suc csuc 6366 ‘cfv 6543 (class class class)co 7412 reccrdg 8415 +o coa 8469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-oadd 8476 |
This theorem is referenced by: oacl 8541 oa0r 8544 oaordi 8552 oawordri 8556 oawordeulem 8560 oalimcl 8566 oaass 8567 oarec 8568 odi 8585 oeoalem 8602 oaabslem 8652 oaabs2 8654 oa0suclim 42488 naddgeoa 42608 naddwordnexlem4 42615 |
Copyright terms: Public domain | W3C validator |