Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oalim | Structured version Visualization version GIF version |
Description: Ordinal addition with a limit ordinal. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oalim | ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6276 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
2 | simpr 488 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
3 | 1, 2 | jca 515 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
4 | rdglim2a 8169 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) | |
5 | 4 | adantl 485 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
6 | oav 8238 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵)) | |
7 | onelon 6238 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
8 | oav 8238 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) | |
9 | 7, 8 | sylan2 596 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
10 | 9 | anassrs 471 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ 𝐵) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
11 | 10 | iuneq2dv 4928 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
12 | 6, 11 | eqeq12d 2753 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))) |
13 | 12 | adantrr 717 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))) |
14 | 5, 13 | mpbird 260 | . 2 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
15 | 3, 14 | sylan2 596 | 1 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ ciun 4904 ↦ cmpt 5135 Oncon0 6213 Lim wlim 6214 suc csuc 6215 ‘cfv 6380 (class class class)co 7213 reccrdg 8145 +o coa 8199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-oadd 8206 |
This theorem is referenced by: oacl 8262 oa0r 8265 oaordi 8274 oawordri 8278 oawordeulem 8282 oalimcl 8288 oaass 8289 oarec 8290 odi 8307 oeoalem 8324 oaabslem 8372 oaabs2 8374 |
Copyright terms: Public domain | W3C validator |