| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oalim | Structured version Visualization version GIF version | ||
| Description: Ordinal addition with a limit ordinal. Definition 8.1 of [TakeutiZaring] p. 56. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oalim | ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon 6372 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
| 4 | rdglim2a 8355 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
| 6 | oav 8429 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵)) | |
| 7 | onelon 6332 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
| 8 | oav 8429 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) | |
| 9 | 7, 8 | sylan2 593 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
| 10 | 9 | anassrs 467 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ 𝐵) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
| 11 | 10 | iuneq2dv 4966 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)) |
| 12 | 6, 11 | eqeq12d 2745 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))) |
| 13 | 12 | adantrr 717 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))) |
| 14 | 5, 13 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
| 15 | 3, 14 | sylan2 593 | 1 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ ciun 4941 ↦ cmpt 5173 Oncon0 6307 Lim wlim 6308 suc csuc 6309 ‘cfv 6482 (class class class)co 7349 reccrdg 8331 +o coa 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-oadd 8392 |
| This theorem is referenced by: oacl 8453 oa0r 8456 oaordi 8464 oawordri 8468 oawordeulem 8472 oalimcl 8478 oaass 8479 oarec 8480 odi 8497 oeoalem 8514 oaabslem 8565 oaabs2 8567 oa0suclim 43258 naddgeoa 43377 naddwordnexlem4 43384 |
| Copyright terms: Public domain | W3C validator |