MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalim Structured version   Visualization version   GIF version

Theorem oalim 8570
Description: Ordinal addition with a limit ordinal. Definition 8.1 of [TakeutiZaring] p. 56. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oalim ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem oalim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6448 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 simpr 484 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → Lim 𝐵)
31, 2jca 511 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵))
4 rdglim2a 8473 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
54adantl 481 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
6 oav 8549 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵))
7 onelon 6409 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 oav 8549 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
97, 8sylan2 593 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
109anassrs 467 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → (𝐴 +o 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
1110iuneq2dv 5016 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 (𝐴 +o 𝑥) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
126, 11eqeq12d 2753 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
1312adantrr 717 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
145, 13mpbird 257 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥))
153, 14sylan2 593 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480   ciun 4991  cmpt 5225  Oncon0 6384  Lim wlim 6385  suc csuc 6386  cfv 6561  (class class class)co 7431  reccrdg 8449   +o coa 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-oadd 8510
This theorem is referenced by:  oacl  8573  oa0r  8576  oaordi  8584  oawordri  8588  oawordeulem  8592  oalimcl  8598  oaass  8599  oarec  8600  odi  8617  oeoalem  8634  oaabslem  8685  oaabs2  8687  oa0suclim  43288  naddgeoa  43407  naddwordnexlem4  43414
  Copyright terms: Public domain W3C validator