MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0 Structured version   Visualization version   GIF version

Theorem oa0 8463
Description: Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oa0 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)

Proof of Theorem oa0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 6372 . . 3 ∅ ∈ On
2 oav 8458 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅))
31, 2mpan2 690 . 2 (𝐴 ∈ On → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅))
4 rdg0g 8374 . 2 (𝐴 ∈ On → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅) = 𝐴)
53, 4eqtrd 2777 1 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3446  c0 4283  cmpt 5189  Oncon0 6318  suc csuc 6320  cfv 6497  (class class class)co 7358  reccrdg 8356   +o coa 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-oadd 8417
This theorem is referenced by:  oa1suc  8478  oacl  8482  oa0r  8485  om0r  8486  oawordri  8498  oaord1  8499  oaword1  8500  oawordeulem  8502  oa00  8507  oaass  8509  oarec  8510  odi  8527  oeoalem  8544  nna0  8552  nna0r  8557  nnm0r  8558  nnawordi  8569  cantnflt  9609  rdgeqoa  35844  oa0suclim  41613  cantnfresb  41661  dflim5  41666  omabs2  41668  ofoafo  41673  ofoaid1  41675  naddcnff  41679  naddcnffo  41681
  Copyright terms: Public domain W3C validator