![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oa0 | Structured version Visualization version GIF version |
Description: Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oa0 | ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6449 | . . 3 ⊢ ∅ ∈ On | |
2 | oav 8567 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅)) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅)) |
4 | rdg0g 8483 | . 2 ⊢ (𝐴 ∈ On → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅) = 𝐴) | |
5 | 3, 4 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 Oncon0 6395 suc csuc 6397 ‘cfv 6573 (class class class)co 7448 reccrdg 8465 +o coa 8519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-oadd 8526 |
This theorem is referenced by: oa1suc 8587 oacl 8591 oa0r 8594 om0r 8595 oawordri 8606 oaord1 8607 oaword1 8608 oawordeulem 8610 oa00 8615 oaass 8617 oarec 8618 odi 8635 oeoalem 8652 nna0 8660 nna0r 8665 nnm0r 8666 nnawordi 8677 naddoa 8758 cantnflt 9741 rdgeqoa 37336 oa0suclim 43237 cantnfresb 43286 dflim5 43291 omabs2 43294 tfsconcatb0 43306 ofoafo 43318 ofoaid1 43320 naddcnff 43324 naddcnffo 43326 oaun3lem1 43336 naddgeoa 43356 naddonnn 43357 naddwordnexlem4 43363 |
Copyright terms: Public domain | W3C validator |