MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0 Structured version   Visualization version   GIF version

Theorem oa0 8520
Description: Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oa0 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)

Proof of Theorem oa0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 6418 . . 3 ∅ ∈ On
2 oav 8515 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅))
31, 2mpan2 688 . 2 (𝐴 ∈ On → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅))
4 rdg0g 8431 . 2 (𝐴 ∈ On → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅) = 𝐴)
53, 4eqtrd 2771 1 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322  cmpt 5231  Oncon0 6364  suc csuc 6366  cfv 6543  (class class class)co 7412  reccrdg 8413   +o coa 8467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-oadd 8474
This theorem is referenced by:  oa1suc  8535  oacl  8539  oa0r  8542  om0r  8543  oawordri  8554  oaord1  8555  oaword1  8556  oawordeulem  8558  oa00  8563  oaass  8565  oarec  8566  odi  8583  oeoalem  8600  nna0  8608  nna0r  8613  nnm0r  8614  nnawordi  8625  cantnflt  9671  rdgeqoa  36555  oa0suclim  42328  cantnfresb  42377  dflim5  42382  omabs2  42385  tfsconcatb0  42397  ofoafo  42409  ofoaid1  42411  naddcnff  42415  naddcnffo  42417  oaun3lem1  42427  naddgeoa  42448  naddonnn  42449  naddwordnexlem4  42455
  Copyright terms: Public domain W3C validator