| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oa0 | Structured version Visualization version GIF version | ||
| Description: Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oa0 | ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6366 | . . 3 ⊢ ∅ ∈ On | |
| 2 | oav 8436 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅)) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅)) |
| 4 | rdg0g 8356 | . 2 ⊢ (𝐴 ∈ On → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘∅) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ↦ cmpt 5176 Oncon0 6311 suc csuc 6313 ‘cfv 6486 (class class class)co 7353 reccrdg 8338 +o coa 8392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-oadd 8399 |
| This theorem is referenced by: oa1suc 8456 oacl 8460 oa0r 8463 om0r 8464 oawordri 8475 oaord1 8476 oaword1 8477 oawordeulem 8479 oa00 8484 oaass 8486 oarec 8487 odi 8504 oeoalem 8521 nna0 8529 nna0r 8534 nnm0r 8535 nnawordi 8546 naddoa 8627 cantnflt 9587 rdgeqoa 37343 oa0suclim 43248 cantnfresb 43297 dflim5 43302 omabs2 43305 tfsconcatb0 43317 ofoafo 43329 ofoaid1 43331 naddcnff 43335 naddcnffo 43337 oaun3lem1 43347 naddgeoa 43367 naddonnn 43368 naddwordnexlem4 43374 |
| Copyright terms: Public domain | W3C validator |