![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdgdmlim | Structured version Visualization version GIF version |
Description: The domain of the recursive definition generator is a limit ordinal. (Contributed by NM, 16-Nov-2014.) |
Ref | Expression |
---|---|
rdgdmlim | ⊢ Lim dom rec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rdg 7791 | . . 3 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
2 | 1 | tfr1a 7775 | . 2 ⊢ (Fun rec(𝐹, 𝐴) ∧ Lim dom rec(𝐹, 𝐴)) |
3 | 2 | simpri 481 | 1 ⊢ Lim dom rec(𝐹, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 Vcvv 3398 ∅c0 4141 ifcif 4307 ∪ cuni 4673 ↦ cmpt 4967 dom cdm 5357 ran crn 5358 Lim wlim 5979 Fun wfun 6131 ‘cfv 6137 reccrdg 7790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-wrecs 7691 df-recs 7753 df-rdg 7791 |
This theorem is referenced by: rdg0 7802 rdgsucg 7804 rdglimg 7806 rdgsucmptnf 7810 frfnom 7815 frsuc 7817 r1funlim 8928 ackbij2 9402 |
Copyright terms: Public domain | W3C validator |