MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgdmlim Structured version   Visualization version   GIF version

Theorem rdgdmlim 7798
Description: The domain of the recursive definition generator is a limit ordinal. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdgdmlim Lim dom rec(𝐹, 𝐴)

Proof of Theorem rdgdmlim
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-rdg 7791 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
21tfr1a 7775 . 2 (Fun rec(𝐹, 𝐴) ∧ Lim dom rec(𝐹, 𝐴))
32simpri 481 1 Lim dom rec(𝐹, 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  Vcvv 3398  c0 4141  ifcif 4307   cuni 4673  cmpt 4967  dom cdm 5357  ran crn 5358  Lim wlim 5979  Fun wfun 6131  cfv 6137  reccrdg 7790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-wrecs 7691  df-recs 7753  df-rdg 7791
This theorem is referenced by:  rdg0  7802  rdgsucg  7804  rdglimg  7806  rdgsucmptnf  7810  frfnom  7815  frsuc  7817  r1funlim  8928  ackbij2  9402
  Copyright terms: Public domain W3C validator