MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq1 Structured version   Visualization version   GIF version

Theorem rdgeq1 8449
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))

Proof of Theorem rdgeq1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6905 . . . . . 6 (𝐹 = 𝐺 → (𝐹‘(𝑔 dom 𝑔)) = (𝐺‘(𝑔 dom 𝑔)))
21ifeq2d 4550 . . . . 5 (𝐹 = 𝐺 → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))
32ifeq2d 4550 . . . 4 (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))
43mpteq2dv 5249 . . 3 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))))
5 recseq 8412 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))))
64, 5syl 17 . 2 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))))
7 df-rdg 8448 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
8 df-rdg 8448 . 2 rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))))
96, 7, 83eqtr4g 2799 1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  Vcvv 3477  c0 4338  ifcif 4530   cuni 4911  cmpt 5230  dom cdm 5688  ran crn 5689  Lim wlim 6386  cfv 6562  recscrecs 8408  reccrdg 8447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5694  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-iota 6515  df-fv 6570  df-ov 7433  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448
This theorem is referenced by:  rdgeq12  8451  rdgsucmpt2  8468  frsucmpt2  8478  seqomlem0  8487  omv  8548  oev  8550  dffi3  9468  hsmex  10469  axdc  10558  seqeq2  14042  seqval  14049  precsexlemcbv  28244  seqsval  28308  seqsfn  28329  seqsp1  28331  neibastop2  36343  rdgssun  37360  exrecfnlem  37361  dffinxpf  37367  finxpeq1  37368
  Copyright terms: Public domain W3C validator