Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rdgeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6657 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘∪ dom 𝑔)) = (𝐺‘(𝑔‘∪ dom 𝑔))) | |
2 | 1 | ifeq2d 4440 | . . . . 5 ⊢ (𝐹 = 𝐺 → if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))) |
3 | 2 | ifeq2d 4440 | . . . 4 ⊢ (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) |
4 | 3 | mpteq2dv 5128 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) |
5 | recseq 8020 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) |
7 | df-rdg 8056 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
8 | df-rdg 8056 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) | |
9 | 6, 7, 8 | 3eqtr4g 2818 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 Vcvv 3409 ∅c0 4225 ifcif 4420 ∪ cuni 4798 ↦ cmpt 5112 dom cdm 5524 ran crn 5525 Lim wlim 6170 ‘cfv 6335 recscrecs 8017 reccrdg 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-xp 5530 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-iota 6294 df-fv 6343 df-wrecs 7957 df-recs 8018 df-rdg 8056 |
This theorem is referenced by: rdgeq12 8059 rdgsucmpt2 8076 frsucmpt2w 8085 frsucmpt2 8086 seqomlem0 8095 omv 8147 oev 8149 dffi3 8928 hsmex 9892 axdc 9981 seqeq2 13422 seqval 13429 trpredlem1 33313 trpredtr 33316 trpredmintr 33317 neibastop2 34099 rdgssun 35075 exrecfnlem 35076 dffinxpf 35082 finxpeq1 35083 |
Copyright terms: Public domain | W3C validator |