MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq1 Structured version   Visualization version   GIF version

Theorem rdgeq1 8411
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))

Proof of Theorem rdgeq1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6891 . . . . . 6 (𝐹 = 𝐺 → (𝐹‘(𝑔 dom 𝑔)) = (𝐺‘(𝑔 dom 𝑔)))
21ifeq2d 4549 . . . . 5 (𝐹 = 𝐺 → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))
32ifeq2d 4549 . . . 4 (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))
43mpteq2dv 5251 . . 3 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))))
5 recseq 8374 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))))
64, 5syl 17 . 2 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔)))))))
7 df-rdg 8410 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
8 df-rdg 8410 . 2 rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐺‘(𝑔 dom 𝑔))))))
96, 7, 83eqtr4g 2798 1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  Vcvv 3475  c0 4323  ifcif 4529   cuni 4909  cmpt 5232  dom cdm 5677  ran crn 5678  Lim wlim 6366  cfv 6544  recscrecs 8370  reccrdg 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5683  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-iota 6496  df-fv 6552  df-ov 7412  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410
This theorem is referenced by:  rdgeq12  8413  rdgsucmpt2  8430  frsucmpt2  8440  seqomlem0  8449  omv  8512  oev  8514  dffi3  9426  hsmex  10427  axdc  10516  seqeq2  13970  seqval  13977  precsexlemcbv  27655  neibastop2  35294  rdgssun  36307  exrecfnlem  36308  dffinxpf  36314  finxpeq1  36315
  Copyright terms: Public domain W3C validator