| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6825 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘∪ dom 𝑔)) = (𝐺‘(𝑔‘∪ dom 𝑔))) | |
| 2 | 1 | ifeq2d 4499 | . . . . 5 ⊢ (𝐹 = 𝐺 → if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))) |
| 3 | 2 | ifeq2d 4499 | . . . 4 ⊢ (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) |
| 4 | 3 | mpteq2dv 5189 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) |
| 5 | recseq 8303 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) |
| 7 | df-rdg 8339 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 8 | df-rdg 8339 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) | |
| 9 | 6, 7, 8 | 3eqtr4g 2789 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3438 ∅c0 4286 ifcif 4478 ∪ cuni 4861 ↦ cmpt 5176 dom cdm 5623 ran crn 5624 Lim wlim 6312 ‘cfv 6486 recscrecs 8300 reccrdg 8338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7356 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 |
| This theorem is referenced by: rdgeq12 8342 rdgsucmpt2 8359 frsucmpt2 8369 seqomlem0 8378 omv 8437 oev 8439 dffi3 9340 hsmex 10345 axdc 10434 seqeq2 13930 seqval 13937 precsexlemcbv 28131 seqsval 28205 seqsfn 28226 seqsp1 28228 constrcbvlem 33721 neibastop2 36334 rdgssun 37351 exrecfnlem 37352 dffinxpf 37358 finxpeq1 37359 |
| Copyright terms: Public domain | W3C validator |