![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdgeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6919 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘∪ dom 𝑔)) = (𝐺‘(𝑔‘∪ dom 𝑔))) | |
2 | 1 | ifeq2d 4568 | . . . . 5 ⊢ (𝐹 = 𝐺 → if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))) |
3 | 2 | ifeq2d 4568 | . . . 4 ⊢ (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) |
4 | 3 | mpteq2dv 5268 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) |
5 | recseq 8430 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) |
7 | df-rdg 8466 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
8 | df-rdg 8466 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) | |
9 | 6, 7, 8 | 3eqtr4g 2805 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 ∅c0 4352 ifcif 4548 ∪ cuni 4931 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 Lim wlim 6396 ‘cfv 6573 recscrecs 8426 reccrdg 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: rdgeq12 8469 rdgsucmpt2 8486 frsucmpt2 8496 seqomlem0 8505 omv 8568 oev 8570 dffi3 9500 hsmex 10501 axdc 10590 seqeq2 14056 seqval 14063 precsexlemcbv 28248 seqsval 28312 seqsfn 28333 seqsp1 28335 neibastop2 36327 rdgssun 37344 exrecfnlem 37345 dffinxpf 37351 finxpeq1 37352 |
Copyright terms: Public domain | W3C validator |