![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdgeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6891 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘∪ dom 𝑔)) = (𝐺‘(𝑔‘∪ dom 𝑔))) | |
2 | 1 | ifeq2d 4549 | . . . . 5 ⊢ (𝐹 = 𝐺 → if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))) |
3 | 2 | ifeq2d 4549 | . . . 4 ⊢ (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) |
4 | 3 | mpteq2dv 5251 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) |
5 | recseq 8374 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) |
7 | df-rdg 8410 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
8 | df-rdg 8410 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) | |
9 | 6, 7, 8 | 3eqtr4g 2798 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Vcvv 3475 ∅c0 4323 ifcif 4529 ∪ cuni 4909 ↦ cmpt 5232 dom cdm 5677 ran crn 5678 Lim wlim 6366 ‘cfv 6544 recscrecs 8370 reccrdg 8409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5683 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-iota 6496 df-fv 6552 df-ov 7412 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 |
This theorem is referenced by: rdgeq12 8413 rdgsucmpt2 8430 frsucmpt2 8440 seqomlem0 8449 omv 8512 oev 8514 dffi3 9426 hsmex 10427 axdc 10516 seqeq2 13970 seqval 13977 precsexlemcbv 27655 neibastop2 35294 rdgssun 36307 exrecfnlem 36308 dffinxpf 36314 finxpeq1 36315 |
Copyright terms: Public domain | W3C validator |