| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6875 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘∪ dom 𝑔)) = (𝐺‘(𝑔‘∪ dom 𝑔))) | |
| 2 | 1 | ifeq2d 4521 | . . . . 5 ⊢ (𝐹 = 𝐺 → if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))) |
| 3 | 2 | ifeq2d 4521 | . . . 4 ⊢ (𝐹 = 𝐺 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) |
| 4 | 3 | mpteq2dv 5215 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) |
| 5 | recseq 8388 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔))))))) |
| 7 | df-rdg 8424 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 8 | df-rdg 8424 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐺‘(𝑔‘∪ dom 𝑔)))))) | |
| 9 | 6, 7, 8 | 3eqtr4g 2795 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3459 ∅c0 4308 ifcif 4500 ∪ cuni 4883 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 Lim wlim 6353 ‘cfv 6531 recscrecs 8384 reccrdg 8423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fv 6539 df-ov 7408 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 |
| This theorem is referenced by: rdgeq12 8427 rdgsucmpt2 8444 frsucmpt2 8454 seqomlem0 8463 omv 8524 oev 8526 dffi3 9443 hsmex 10446 axdc 10535 seqeq2 14023 seqval 14030 precsexlemcbv 28160 seqsval 28234 seqsfn 28255 seqsp1 28257 constrcbvlem 33789 neibastop2 36379 rdgssun 37396 exrecfnlem 37397 dffinxpf 37403 finxpeq1 37404 |
| Copyright terms: Public domain | W3C validator |