MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq2 Structured version   Visualization version   GIF version

Theorem rdgeq2 8214
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))

Proof of Theorem rdgeq2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ifeq1 4460 . . . 4 (𝐴 = 𝐵 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
21mpteq2dv 5172 . . 3 (𝐴 = 𝐵 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
3 recseq 8176 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
42, 3syl 17 . 2 (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
5 df-rdg 8212 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
6 df-rdg 8212 . 2 rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
74, 5, 63eqtr4g 2804 1 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3422  c0 4253  ifcif 4456   cuni 4836  cmpt 5153  dom cdm 5580  ran crn 5581  Lim wlim 6252  cfv 6418  recscrecs 8172  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fv 6426  df-ov 7258  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  rdgeq12  8215  rdg0g  8229  oav  8303  trpredeq3  9400  itunifval  10103  hsmex  10119  ltweuz  13609  seqeq1  13652  dfrdg2  33677  finxpeq2  35485  finxpreclem6  35494  finxpsuclem  35495
  Copyright terms: Public domain W3C validator