| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq2 | ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1 4495 | . . . 4 ⊢ (𝐴 = 𝐵 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) | |
| 2 | 1 | mpteq2dv 5204 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
| 3 | recseq 8345 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))))) |
| 5 | df-rdg 8381 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 6 | df-rdg 8381 | . 2 ⊢ rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 7 | 4, 5, 6 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3450 ∅c0 4299 ifcif 4491 ∪ cuni 4874 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 Lim wlim 6336 ‘cfv 6514 recscrecs 8342 reccrdg 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fv 6522 df-ov 7393 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 |
| This theorem is referenced by: rdgeq12 8384 rdg0g 8398 oav 8478 itunifval 10376 hsmex 10392 ltweuz 13933 seqeq1 13976 dfrdg2 35790 finxpeq2 37382 finxpreclem6 37391 finxpsuclem 37392 |
| Copyright terms: Public domain | W3C validator |