![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdg0n | Structured version Visualization version GIF version |
Description: If 𝐴 is a proper class, then the recursive function generator at ∅ is the empty set. (Contributed by Scott Fenton, 31-Oct-2024.) |
Ref | Expression |
---|---|
rdg0n | ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6416 | . . . 4 ⊢ ∅ ∈ On | |
2 | df-rdg 8407 | . . . . 5 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
3 | 2 | tfr2 8395 | . . . 4 ⊢ (∅ ∈ On → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅))) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) |
5 | res0 5984 | . . . 4 ⊢ (rec(𝐹, 𝐴) ↾ ∅) = ∅ | |
6 | 5 | fveq2i 6892 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
7 | 4, 6 | eqtri 2761 | . 2 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
8 | iftrue 4534 | . . 3 ⊢ (𝑔 = ∅ → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = 𝐴) | |
9 | eqid 2733 | . . 3 ⊢ (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) | |
10 | 8, 9 | fvmptn 7020 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) = ∅) |
11 | 7, 10 | eqtrid 2785 | 1 ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4322 ifcif 4528 ∪ cuni 4908 ↦ cmpt 5231 dom cdm 5676 ran crn 5677 ↾ cres 5678 Oncon0 6362 Lim wlim 6363 ‘cfv 6541 reccrdg 8406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 |
This theorem is referenced by: ttrclselem1 9717 |
Copyright terms: Public domain | W3C validator |