| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdg0n | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a proper class, then the recursive function generator at ∅ is the empty set. (Contributed by Scott Fenton, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| rdg0n | ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6389 | . . . 4 ⊢ ∅ ∈ On | |
| 2 | df-rdg 8380 | . . . . 5 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 3 | 2 | tfr2 8368 | . . . 4 ⊢ (∅ ∈ On → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅))) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) |
| 5 | res0 5956 | . . . 4 ⊢ (rec(𝐹, 𝐴) ↾ ∅) = ∅ | |
| 6 | 5 | fveq2i 6863 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 7 | 4, 6 | eqtri 2753 | . 2 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 8 | iftrue 4496 | . . 3 ⊢ (𝑔 = ∅ → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = 𝐴) | |
| 9 | eqid 2730 | . . 3 ⊢ (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) | |
| 10 | 8, 9 | fvmptn 6995 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) = ∅) |
| 11 | 7, 10 | eqtrid 2777 | 1 ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4298 ifcif 4490 ∪ cuni 4873 ↦ cmpt 5190 dom cdm 5640 ran crn 5641 ↾ cres 5642 Oncon0 6334 Lim wlim 6335 ‘cfv 6513 reccrdg 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 |
| This theorem is referenced by: ttrclselem1 9684 |
| Copyright terms: Public domain | W3C validator |