MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdg0n Structured version   Visualization version   GIF version

Theorem rdg0n 8363
Description: If 𝐴 is a proper class, then the recursive function generator at is the empty set. (Contributed by Scott Fenton, 31-Oct-2024.)
Assertion
Ref Expression
rdg0n 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅)

Proof of Theorem rdg0n
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0elon 6366 . . . 4 ∅ ∈ On
2 df-rdg 8339 . . . . 5 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
32tfr2 8327 . . . 4 (∅ ∈ On → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)))
41, 3ax-mp 5 . . 3 (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅))
5 res0 5938 . . . 4 (rec(𝐹, 𝐴) ↾ ∅) = ∅
65fveq2i 6829 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
74, 6eqtri 2752 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅)
8 iftrue 4484 . . 3 (𝑔 = ∅ → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = 𝐴)
9 eqid 2729 . . 3 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
108, 9fvmptn 6959 . 2 𝐴 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘∅) = ∅)
117, 10eqtrid 2776 1 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  ifcif 4478   cuni 4861  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  Oncon0 6311  Lim wlim 6312  cfv 6486  reccrdg 8338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339
This theorem is referenced by:  ttrclselem1  9640
  Copyright terms: Public domain W3C validator