| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdg0n | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a proper class, then the recursive function generator at ∅ is the empty set. (Contributed by Scott Fenton, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| rdg0n | ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6417 | . . . 4 ⊢ ∅ ∈ On | |
| 2 | df-rdg 8431 | . . . . 5 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 3 | 2 | tfr2 8419 | . . . 4 ⊢ (∅ ∈ On → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅))) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) |
| 5 | res0 5981 | . . . 4 ⊢ (rec(𝐹, 𝐴) ↾ ∅) = ∅ | |
| 6 | 5 | fveq2i 6888 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 7 | 4, 6 | eqtri 2757 | . 2 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 8 | iftrue 4511 | . . 3 ⊢ (𝑔 = ∅ → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = 𝐴) | |
| 9 | eqid 2734 | . . 3 ⊢ (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) | |
| 10 | 8, 9 | fvmptn 7020 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) = ∅) |
| 11 | 7, 10 | eqtrid 2781 | 1 ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 ifcif 4505 ∪ cuni 4887 ↦ cmpt 5205 dom cdm 5665 ran crn 5666 ↾ cres 5667 Oncon0 6363 Lim wlim 6364 ‘cfv 6540 reccrdg 8430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 |
| This theorem is referenced by: ttrclselem1 9746 |
| Copyright terms: Public domain | W3C validator |