| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdg0n | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a proper class, then the recursive function generator at ∅ is the empty set. (Contributed by Scott Fenton, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| rdg0n | ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6395 | . . . 4 ⊢ ∅ ∈ On | |
| 2 | df-rdg 8387 | . . . . 5 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 3 | 2 | tfr2 8375 | . . . 4 ⊢ (∅ ∈ On → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅))) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) |
| 5 | res0 5962 | . . . 4 ⊢ (rec(𝐹, 𝐴) ↾ ∅) = ∅ | |
| 6 | 5 | fveq2i 6868 | . . 3 ⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 7 | 4, 6 | eqtri 2753 | . 2 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 8 | iftrue 4502 | . . 3 ⊢ (𝑔 = ∅ → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = 𝐴) | |
| 9 | eqid 2730 | . . 3 ⊢ (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) | |
| 10 | 8, 9 | fvmptn 7000 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) = ∅) |
| 11 | 7, 10 | eqtrid 2777 | 1 ⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∅c0 4304 ifcif 4496 ∪ cuni 4879 ↦ cmpt 5196 dom cdm 5646 ran crn 5647 ↾ cres 5648 Oncon0 6340 Lim wlim 6341 ‘cfv 6519 reccrdg 8386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 |
| This theorem is referenced by: ttrclselem1 9696 |
| Copyright terms: Public domain | W3C validator |