MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oasuc Structured version   Visualization version   GIF version

Theorem oasuc 8545
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))

Proof of Theorem oasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgsuc 8445 . . 3 (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
21adantl 480 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
3 onsuc 7815 . . 3 (𝐵 ∈ On → suc 𝐵 ∈ On)
4 oav 8532 . . 3 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
53, 4sylan2 591 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
6 ovex 7452 . . . 4 (𝐴 +o 𝐵) ∈ V
7 suceq 6437 . . . . 5 (𝑥 = (𝐴 +o 𝐵) → suc 𝑥 = suc (𝐴 +o 𝐵))
8 eqid 2725 . . . . 5 (𝑥 ∈ V ↦ suc 𝑥) = (𝑥 ∈ V ↦ suc 𝑥)
96sucex 7810 . . . . 5 suc (𝐴 +o 𝐵) ∈ V
107, 8, 9fvmpt 7004 . . . 4 ((𝐴 +o 𝐵) ∈ V → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵))
116, 10ax-mp 5 . . 3 ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵)
12 oav 8532 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
1312fveq2d 6900 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
1411, 13eqtr3id 2779 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc (𝐴 +o 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
152, 5, 143eqtr4d 2775 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cmpt 5232  Oncon0 6371  suc csuc 6373  cfv 6549  (class class class)co 7419  reccrdg 8430   +o coa 8484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-oadd 8491
This theorem is referenced by:  oacl  8556  oa0r  8559  oaordi  8567  oawordri  8571  oawordeulem  8575  oalimcl  8581  oaass  8582  oarec  8583  odi  8600  oeoalem  8617  oa0suclim  42851  dflim5  42905  naddgeoa  42971  naddonnn  42972  naddwordnexlem4  42978
  Copyright terms: Public domain W3C validator