![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oasuc | Structured version Visualization version GIF version |
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oasuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgsuc 8421 | . . 3 ⊢ (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) |
3 | onsuc 7796 | . . 3 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
4 | oav 8508 | . . 3 ⊢ ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵)) | |
5 | 3, 4 | sylan2 594 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵)) |
6 | ovex 7439 | . . . 4 ⊢ (𝐴 +o 𝐵) ∈ V | |
7 | suceq 6428 | . . . . 5 ⊢ (𝑥 = (𝐴 +o 𝐵) → suc 𝑥 = suc (𝐴 +o 𝐵)) | |
8 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ V ↦ suc 𝑥) = (𝑥 ∈ V ↦ suc 𝑥) | |
9 | 6 | sucex 7791 | . . . . 5 ⊢ suc (𝐴 +o 𝐵) ∈ V |
10 | 7, 8, 9 | fvmpt 6996 | . . . 4 ⊢ ((𝐴 +o 𝐵) ∈ V → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵)) |
11 | 6, 10 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵) |
12 | oav 8508 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) | |
13 | 12 | fveq2d 6893 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) |
14 | 11, 13 | eqtr3id 2787 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc (𝐴 +o 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) |
15 | 2, 5, 14 | 3eqtr4d 2783 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ↦ cmpt 5231 Oncon0 6362 suc csuc 6364 ‘cfv 6541 (class class class)co 7406 reccrdg 8406 +o coa 8460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-oadd 8467 |
This theorem is referenced by: oacl 8532 oa0r 8535 oaordi 8543 oawordri 8547 oawordeulem 8551 oalimcl 8557 oaass 8558 oarec 8559 odi 8576 oeoalem 8593 oa0suclim 42011 dflim5 42065 naddgeoa 42131 naddonnn 42132 naddwordnexlem4 42138 |
Copyright terms: Public domain | W3C validator |