MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-1 Structured version   Visualization version   GIF version

Theorem tz7.44-1 8425
Description: The value of 𝐹 at . Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44-1.3 𝐴 ∈ V
Assertion
Ref Expression
tz7.44-1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐹   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-1
StepHypRef Expression
1 fveq2 6881 . . . 4 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
2 reseq2 5966 . . . . . 6 (𝑦 = ∅ → (𝐹𝑦) = (𝐹 ↾ ∅))
3 res0 5975 . . . . . 6 (𝐹 ↾ ∅) = ∅
42, 3eqtrdi 2787 . . . . 5 (𝑦 = ∅ → (𝐹𝑦) = ∅)
54fveq2d 6885 . . . 4 (𝑦 = ∅ → (𝐺‘(𝐹𝑦)) = (𝐺‘∅))
61, 5eqeq12d 2752 . . 3 (𝑦 = ∅ → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅)))
7 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
86, 7vtoclga 3561 . 2 (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅))
9 0ex 5282 . . 3 ∅ ∈ V
10 iftrue 4511 . . . 4 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = 𝐴)
11 tz7.44.1 . . . 4 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
12 tz7.44-1.3 . . . 4 𝐴 ∈ V
1310, 11, 12fvmpt 6991 . . 3 (∅ ∈ V → (𝐺‘∅) = 𝐴)
149, 13ax-mp 5 . 2 (𝐺‘∅) = 𝐴
158, 14eqtrdi 2787 1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  ifcif 4505   cuni 4888  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  Lim wlim 6358  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544
This theorem is referenced by:  rdg0  8440
  Copyright terms: Public domain W3C validator