Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz7.44-1 | Structured version Visualization version GIF version |
Description: The value of 𝐹 at ∅. Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
tz7.44.1 | ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
tz7.44.2 | ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
tz7.44-1.3 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz7.44-1 | ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) | |
2 | reseq2 5886 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = (𝐹 ↾ ∅)) | |
3 | res0 5895 | . . . . . 6 ⊢ (𝐹 ↾ ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2794 | . . . . 5 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = ∅) |
5 | 4 | fveq2d 6778 | . . . 4 ⊢ (𝑦 = ∅ → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘∅)) |
6 | 1, 5 | eqeq12d 2754 | . . 3 ⊢ (𝑦 = ∅ → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅))) |
7 | tz7.44.2 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) | |
8 | 6, 7 | vtoclga 3513 | . 2 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅)) |
9 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
10 | iftrue 4465 | . . . 4 ⊢ (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = 𝐴) | |
11 | tz7.44.1 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) | |
12 | tz7.44-1.3 | . . . 4 ⊢ 𝐴 ∈ V | |
13 | 10, 11, 12 | fvmpt 6875 | . . 3 ⊢ (∅ ∈ V → (𝐺‘∅) = 𝐴) |
14 | 9, 13 | ax-mp 5 | . 2 ⊢ (𝐺‘∅) = 𝐴 |
15 | 8, 14 | eqtrdi 2794 | 1 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ifcif 4459 ∪ cuni 4839 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 ↾ cres 5591 Lim wlim 6267 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: rdg0 8252 |
Copyright terms: Public domain | W3C validator |