![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.44-1 | Structured version Visualization version GIF version |
Description: The value of 𝐹 at ∅. Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
tz7.44.1 | ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
tz7.44.2 | ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
tz7.44-1.3 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz7.44-1 | ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 ⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) | |
2 | reseq2 5976 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = (𝐹 ↾ ∅)) | |
3 | res0 5985 | . . . . . 6 ⊢ (𝐹 ↾ ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2788 | . . . . 5 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = ∅) |
5 | 4 | fveq2d 6895 | . . . 4 ⊢ (𝑦 = ∅ → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘∅)) |
6 | 1, 5 | eqeq12d 2748 | . . 3 ⊢ (𝑦 = ∅ → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅))) |
7 | tz7.44.2 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) | |
8 | 6, 7 | vtoclga 3565 | . 2 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅)) |
9 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
10 | iftrue 4534 | . . . 4 ⊢ (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = 𝐴) | |
11 | tz7.44.1 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) | |
12 | tz7.44-1.3 | . . . 4 ⊢ 𝐴 ∈ V | |
13 | 10, 11, 12 | fvmpt 6998 | . . 3 ⊢ (∅ ∈ V → (𝐺‘∅) = 𝐴) |
14 | 9, 13 | ax-mp 5 | . 2 ⊢ (𝐺‘∅) = 𝐴 |
15 | 8, 14 | eqtrdi 2788 | 1 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 ifcif 4528 ∪ cuni 4908 ↦ cmpt 5231 dom cdm 5676 ran crn 5677 ↾ cres 5678 Lim wlim 6365 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: rdg0 8423 |
Copyright terms: Public domain | W3C validator |