MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-1 Structured version   Visualization version   GIF version

Theorem tz7.44-1 8377
Description: The value of 𝐹 at . Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44-1.3 𝐴 ∈ V
Assertion
Ref Expression
tz7.44-1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐹   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-1
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
2 reseq2 5948 . . . . . 6 (𝑦 = ∅ → (𝐹𝑦) = (𝐹 ↾ ∅))
3 res0 5957 . . . . . 6 (𝐹 ↾ ∅) = ∅
42, 3eqtrdi 2781 . . . . 5 (𝑦 = ∅ → (𝐹𝑦) = ∅)
54fveq2d 6865 . . . 4 (𝑦 = ∅ → (𝐺‘(𝐹𝑦)) = (𝐺‘∅))
61, 5eqeq12d 2746 . . 3 (𝑦 = ∅ → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅)))
7 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
86, 7vtoclga 3546 . 2 (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅))
9 0ex 5265 . . 3 ∅ ∈ V
10 iftrue 4497 . . . 4 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = 𝐴)
11 tz7.44.1 . . . 4 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
12 tz7.44-1.3 . . . 4 𝐴 ∈ V
1310, 11, 12fvmpt 6971 . . 3 (∅ ∈ V → (𝐺‘∅) = 𝐴)
149, 13ax-mp 5 . 2 (𝐺‘∅) = 𝐴
158, 14eqtrdi 2781 1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ifcif 4491   cuni 4874  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  Lim wlim 6336  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  rdg0  8392
  Copyright terms: Public domain W3C validator