MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-1 Structured version   Visualization version   GIF version

Theorem tz7.44-1 8163
Description: The value of 𝐹 at . Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44-1.3 𝐴 ∈ V
Assertion
Ref Expression
tz7.44-1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐹   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-1
StepHypRef Expression
1 fveq2 6736 . . . 4 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
2 reseq2 5861 . . . . . 6 (𝑦 = ∅ → (𝐹𝑦) = (𝐹 ↾ ∅))
3 res0 5870 . . . . . 6 (𝐹 ↾ ∅) = ∅
42, 3eqtrdi 2795 . . . . 5 (𝑦 = ∅ → (𝐹𝑦) = ∅)
54fveq2d 6740 . . . 4 (𝑦 = ∅ → (𝐺‘(𝐹𝑦)) = (𝐺‘∅))
61, 5eqeq12d 2754 . . 3 (𝑦 = ∅ → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅)))
7 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
86, 7vtoclga 3502 . 2 (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅))
9 0ex 5215 . . 3 ∅ ∈ V
10 iftrue 4460 . . . 4 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = 𝐴)
11 tz7.44.1 . . . 4 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
12 tz7.44-1.3 . . . 4 𝐴 ∈ V
1310, 11, 12fvmpt 6837 . . 3 (∅ ∈ V → (𝐺‘∅) = 𝐴)
149, 13ax-mp 5 . 2 (𝐺‘∅) = 𝐴
158, 14eqtrdi 2795 1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  Vcvv 3421  c0 4252  ifcif 4454   cuni 4834  cmpt 5150  dom cdm 5566  ran crn 5567  cres 5568  Lim wlim 6232  cfv 6398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pr 5337
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-res 5578  df-iota 6356  df-fun 6400  df-fv 6406
This theorem is referenced by:  rdg0  8178
  Copyright terms: Public domain W3C validator