| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.44-1 | Structured version Visualization version GIF version | ||
| Description: The value of 𝐹 at ∅. Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| tz7.44.1 | ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
| tz7.44.2 | ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
| tz7.44-1.3 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz7.44-1 | ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . 4 ⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) | |
| 2 | reseq2 5966 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = (𝐹 ↾ ∅)) | |
| 3 | res0 5975 | . . . . . 6 ⊢ (𝐹 ↾ ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2787 | . . . . 5 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = ∅) |
| 5 | 4 | fveq2d 6885 | . . . 4 ⊢ (𝑦 = ∅ → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘∅)) |
| 6 | 1, 5 | eqeq12d 2752 | . . 3 ⊢ (𝑦 = ∅ → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅))) |
| 7 | tz7.44.2 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) | |
| 8 | 6, 7 | vtoclga 3561 | . 2 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅)) |
| 9 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 10 | iftrue 4511 | . . . 4 ⊢ (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = 𝐴) | |
| 11 | tz7.44.1 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) | |
| 12 | tz7.44-1.3 | . . . 4 ⊢ 𝐴 ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6991 | . . 3 ⊢ (∅ ∈ V → (𝐺‘∅) = 𝐴) |
| 14 | 9, 13 | ax-mp 5 | . 2 ⊢ (𝐺‘∅) = 𝐴 |
| 15 | 8, 14 | eqtrdi 2787 | 1 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ifcif 4505 ∪ cuni 4888 ↦ cmpt 5206 dom cdm 5659 ran crn 5660 ↾ cres 5661 Lim wlim 6358 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: rdg0 8440 |
| Copyright terms: Public domain | W3C validator |