| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.44-1 | Structured version Visualization version GIF version | ||
| Description: The value of 𝐹 at ∅. Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| tz7.44.1 | ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
| tz7.44.2 | ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
| tz7.44-1.3 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz7.44-1 | ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) | |
| 2 | reseq2 5922 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = (𝐹 ↾ ∅)) | |
| 3 | res0 5931 | . . . . . 6 ⊢ (𝐹 ↾ ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2782 | . . . . 5 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = ∅) |
| 5 | 4 | fveq2d 6826 | . . . 4 ⊢ (𝑦 = ∅ → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘∅)) |
| 6 | 1, 5 | eqeq12d 2747 | . . 3 ⊢ (𝑦 = ∅ → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅))) |
| 7 | tz7.44.2 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) | |
| 8 | 6, 7 | vtoclga 3528 | . 2 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅)) |
| 9 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 10 | iftrue 4478 | . . . 4 ⊢ (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = 𝐴) | |
| 11 | tz7.44.1 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) | |
| 12 | tz7.44-1.3 | . . . 4 ⊢ 𝐴 ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6929 | . . 3 ⊢ (∅ ∈ V → (𝐺‘∅) = 𝐴) |
| 14 | 9, 13 | ax-mp 5 | . 2 ⊢ (𝐺‘∅) = 𝐴 |
| 15 | 8, 14 | eqtrdi 2782 | 1 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ifcif 4472 ∪ cuni 4856 ↦ cmpt 5170 dom cdm 5614 ran crn 5615 ↾ cres 5616 Lim wlim 6307 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: rdg0 8340 |
| Copyright terms: Public domain | W3C validator |