MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1 Structured version   Visualization version   GIF version

Theorem tfr1 8342
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1 𝐹 Fn On

Proof of Theorem tfr1
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem7 8328 . . 3 Fun recs(𝐺)
31tfrlem14 8336 . . 3 dom recs(𝐺) = On
4 df-fn 6502 . . 3 (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On))
52, 3, 4mpbir2an 711 . 2 recs(𝐺) Fn On
6 tfr.1 . . 3 𝐹 = recs(𝐺)
76fneq1i 6597 . 2 (𝐹 Fn On ↔ recs(𝐺) Fn On)
85, 7mpbir 231 1 𝐹 Fn On
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  {cab 2707  wral 3044  wrex 3053  dom cdm 5631  cres 5633  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  cfv 6499  recscrecs 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317
This theorem is referenced by:  tfr2  8343  tfr3  8344  recsfnon  8348  rdgfnon  8363  dfac8alem  9958  dfac12lem1  10073  dfac12lem2  10074  zorn2lem1  10425  zorn2lem2  10426  zorn2lem4  10428  zorn2lem5  10429  zorn2lem6  10430  zorn2lem7  10431  ttukeylem3  10440  ttukeylem5  10442  ttukeylem6  10443  madeval  27797  newval  27800  madef  27801  onvf1odlem3  35085  onvf1odlem4  35086  onvf1od  35087  dnnumch1  43026  dnnumch3lem  43028  dnnumch3  43029  aomclem6  43041
  Copyright terms: Public domain W3C validator