Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version |
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr1 | ⊢ 𝐹 Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem7 8185 | . . 3 ⊢ Fun recs(𝐺) |
3 | 1 | tfrlem14 8193 | . . 3 ⊢ dom recs(𝐺) = On |
4 | df-fn 6421 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
5 | 2, 3, 4 | mpbir2an 707 | . 2 ⊢ recs(𝐺) Fn On |
6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
7 | 6 | fneq1i 6514 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
8 | 5, 7 | mpbir 230 | 1 ⊢ 𝐹 Fn On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 {cab 2715 ∀wral 3063 ∃wrex 3064 dom cdm 5580 ↾ cres 5582 Oncon0 6251 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 recscrecs 8172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 |
This theorem is referenced by: tfr2 8200 tfr3 8201 recsfnon 8205 rdgfnon 8220 dfac8alem 9716 dfac12lem1 9830 dfac12lem2 9831 zorn2lem1 10183 zorn2lem2 10184 zorn2lem4 10186 zorn2lem5 10187 zorn2lem6 10188 zorn2lem7 10189 ttukeylem3 10198 ttukeylem5 10200 ttukeylem6 10201 madeval 33963 newval 33966 madef 33967 dnnumch1 40785 dnnumch3lem 40787 dnnumch3 40788 aomclem6 40800 |
Copyright terms: Public domain | W3C validator |