| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version | ||
| Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1 | ⊢ 𝐹 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8354 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | 1 | tfrlem14 8362 | . . 3 ⊢ dom recs(𝐺) = On |
| 4 | df-fn 6517 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
| 5 | 2, 3, 4 | mpbir2an 711 | . 2 ⊢ recs(𝐺) Fn On |
| 6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
| 7 | 6 | fneq1i 6618 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
| 8 | 5, 7 | mpbir 231 | 1 ⊢ 𝐹 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2708 ∀wral 3045 ∃wrex 3054 dom cdm 5641 ↾ cres 5643 Oncon0 6335 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 recscrecs 8342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 |
| This theorem is referenced by: tfr2 8369 tfr3 8370 recsfnon 8374 rdgfnon 8389 dfac8alem 9989 dfac12lem1 10104 dfac12lem2 10105 zorn2lem1 10456 zorn2lem2 10457 zorn2lem4 10459 zorn2lem5 10460 zorn2lem6 10461 zorn2lem7 10462 ttukeylem3 10471 ttukeylem5 10473 ttukeylem6 10474 madeval 27767 newval 27770 madef 27771 onvf1odlem3 35099 onvf1odlem4 35100 onvf1od 35101 dnnumch1 43040 dnnumch3lem 43042 dnnumch3 43043 aomclem6 43055 |
| Copyright terms: Public domain | W3C validator |