Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version |
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr1 | ⊢ 𝐹 Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem7 8203 | . . 3 ⊢ Fun recs(𝐺) |
3 | 1 | tfrlem14 8211 | . . 3 ⊢ dom recs(𝐺) = On |
4 | df-fn 6434 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
5 | 2, 3, 4 | mpbir2an 708 | . 2 ⊢ recs(𝐺) Fn On |
6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
7 | 6 | fneq1i 6527 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
8 | 5, 7 | mpbir 230 | 1 ⊢ 𝐹 Fn On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 {cab 2717 ∀wral 3066 ∃wrex 3067 dom cdm 5589 ↾ cres 5591 Oncon0 6264 Fun wfun 6425 Fn wfn 6426 ‘cfv 6431 recscrecs 8190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 |
This theorem is referenced by: tfr2 8218 tfr3 8219 recsfnon 8223 rdgfnon 8238 dfac8alem 9784 dfac12lem1 9898 dfac12lem2 9899 zorn2lem1 10251 zorn2lem2 10252 zorn2lem4 10254 zorn2lem5 10255 zorn2lem6 10256 zorn2lem7 10257 ttukeylem3 10266 ttukeylem5 10268 ttukeylem6 10269 madeval 34030 newval 34033 madef 34034 dnnumch1 40864 dnnumch3lem 40866 dnnumch3 40867 aomclem6 40879 |
Copyright terms: Public domain | W3C validator |