| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version | ||
| Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1 | ⊢ 𝐹 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8397 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | 1 | tfrlem14 8405 | . . 3 ⊢ dom recs(𝐺) = On |
| 4 | df-fn 6534 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
| 5 | 2, 3, 4 | mpbir2an 711 | . 2 ⊢ recs(𝐺) Fn On |
| 6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
| 7 | 6 | fneq1i 6635 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
| 8 | 5, 7 | mpbir 231 | 1 ⊢ 𝐹 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2713 ∀wral 3051 ∃wrex 3060 dom cdm 5654 ↾ cres 5656 Oncon0 6352 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 recscrecs 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 |
| This theorem is referenced by: tfr2 8412 tfr3 8413 recsfnon 8417 rdgfnon 8432 dfac8alem 10043 dfac12lem1 10158 dfac12lem2 10159 zorn2lem1 10510 zorn2lem2 10511 zorn2lem4 10513 zorn2lem5 10514 zorn2lem6 10515 zorn2lem7 10516 ttukeylem3 10525 ttukeylem5 10527 ttukeylem6 10528 madeval 27812 newval 27815 madef 27816 dnnumch1 43068 dnnumch3lem 43070 dnnumch3 43071 aomclem6 43083 |
| Copyright terms: Public domain | W3C validator |