![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version |
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr1 | ⊢ 𝐹 Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem7 8439 | . . 3 ⊢ Fun recs(𝐺) |
3 | 1 | tfrlem14 8447 | . . 3 ⊢ dom recs(𝐺) = On |
4 | df-fn 6576 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
5 | 2, 3, 4 | mpbir2an 710 | . 2 ⊢ recs(𝐺) Fn On |
6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
7 | 6 | fneq1i 6676 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
8 | 5, 7 | mpbir 231 | 1 ⊢ 𝐹 Fn On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 {cab 2717 ∀wral 3067 ∃wrex 3076 dom cdm 5700 ↾ cres 5702 Oncon0 6395 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 recscrecs 8426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 |
This theorem is referenced by: tfr2 8454 tfr3 8455 recsfnon 8459 rdgfnon 8474 dfac8alem 10098 dfac12lem1 10213 dfac12lem2 10214 zorn2lem1 10565 zorn2lem2 10566 zorn2lem4 10568 zorn2lem5 10569 zorn2lem6 10570 zorn2lem7 10571 ttukeylem3 10580 ttukeylem5 10582 ttukeylem6 10583 madeval 27909 newval 27912 madef 27913 dnnumch1 43001 dnnumch3lem 43003 dnnumch3 43004 aomclem6 43016 |
Copyright terms: Public domain | W3C validator |