| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version | ||
| Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1 | ⊢ 𝐹 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8302 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | 1 | tfrlem14 8310 | . . 3 ⊢ dom recs(𝐺) = On |
| 4 | df-fn 6484 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
| 5 | 2, 3, 4 | mpbir2an 711 | . 2 ⊢ recs(𝐺) Fn On |
| 6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
| 7 | 6 | fneq1i 6578 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
| 8 | 5, 7 | mpbir 231 | 1 ⊢ 𝐹 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 {cab 2709 ∀wral 3047 ∃wrex 3056 dom cdm 5614 ↾ cres 5616 Oncon0 6306 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 recscrecs 8290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 |
| This theorem is referenced by: tfr2 8317 tfr3 8318 recsfnon 8322 rdgfnon 8337 dfac8alem 9920 dfac12lem1 10035 dfac12lem2 10036 zorn2lem1 10387 zorn2lem2 10388 zorn2lem4 10390 zorn2lem5 10391 zorn2lem6 10392 zorn2lem7 10393 ttukeylem3 10402 ttukeylem5 10404 ttukeylem6 10405 madeval 27793 newval 27796 madef 27797 onvf1odlem3 35149 onvf1odlem4 35150 onvf1od 35151 dnnumch1 43147 dnnumch3lem 43149 dnnumch3 43150 aomclem6 43162 |
| Copyright terms: Public domain | W3C validator |