![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version |
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr1 | ⊢ 𝐹 Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem7 7821 | . . 3 ⊢ Fun recs(𝐺) |
3 | 1 | tfrlem14 7829 | . . 3 ⊢ dom recs(𝐺) = On |
4 | df-fn 6188 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
5 | 2, 3, 4 | mpbir2an 698 | . 2 ⊢ recs(𝐺) Fn On |
6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
7 | 6 | fneq1i 6280 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
8 | 5, 7 | mpbir 223 | 1 ⊢ 𝐹 Fn On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 {cab 2752 ∀wral 3082 ∃wrex 3083 dom cdm 5403 ↾ cres 5405 Oncon0 6026 Fun wfun 6179 Fn wfn 6180 ‘cfv 6185 recscrecs 7809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-wrecs 7748 df-recs 7810 |
This theorem is referenced by: tfr2 7836 tfr3 7837 recsfnon 7841 rdgfnon 7856 dfac8alem 9247 dfac12lem1 9361 dfac12lem2 9362 zorn2lem1 9714 zorn2lem2 9715 zorn2lem4 9717 zorn2lem5 9718 zorn2lem6 9719 zorn2lem7 9720 ttukeylem3 9729 ttukeylem5 9731 ttukeylem6 9732 madeval 32839 dnnumch1 39069 dnnumch3lem 39071 dnnumch3 39072 aomclem6 39084 |
Copyright terms: Public domain | W3C validator |