| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1 | Structured version Visualization version GIF version | ||
| Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1 | ⊢ 𝐹 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8328 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | 1 | tfrlem14 8336 | . . 3 ⊢ dom recs(𝐺) = On |
| 4 | df-fn 6502 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
| 5 | 2, 3, 4 | mpbir2an 711 | . 2 ⊢ recs(𝐺) Fn On |
| 6 | tfr.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
| 7 | 6 | fneq1i 6597 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
| 8 | 5, 7 | mpbir 231 | 1 ⊢ 𝐹 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2707 ∀wral 3044 ∃wrex 3053 dom cdm 5631 ↾ cres 5633 Oncon0 6320 Fun wfun 6493 Fn wfn 6494 ‘cfv 6499 recscrecs 8316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 |
| This theorem is referenced by: tfr2 8343 tfr3 8344 recsfnon 8348 rdgfnon 8363 dfac8alem 9958 dfac12lem1 10073 dfac12lem2 10074 zorn2lem1 10425 zorn2lem2 10426 zorn2lem4 10428 zorn2lem5 10429 zorn2lem6 10430 zorn2lem7 10431 ttukeylem3 10440 ttukeylem5 10442 ttukeylem6 10443 madeval 27797 newval 27800 madef 27801 onvf1odlem3 35085 onvf1odlem4 35086 onvf1od 35087 dnnumch1 43026 dnnumch3lem 43028 dnnumch3 43029 aomclem6 43041 |
| Copyright terms: Public domain | W3C validator |