MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgseg Structured version   Visualization version   GIF version

Theorem rdgseg 8351
Description: The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rdgseg (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)

Proof of Theorem rdgseg
Dummy variables 𝑥 𝑦 𝑓 𝑔 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rdg 8339 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
21reseq1i 5930 . 2 (rec(𝐹, 𝐴) ↾ 𝐵) = (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵)
3 rdglem1 8344 . . . 4 {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑣𝑦 (𝑤𝑣) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑤𝑣)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))}
43tfrlem9a 8315 . . 3 (𝐵 ∈ dom recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) → (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵) ∈ V)
51dmeqi 5851 . . 3 dom rec(𝐹, 𝐴) = dom recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
64, 5eleq2s 2846 . 2 (𝐵 ∈ dom rec(𝐹, 𝐴) → (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵) ∈ V)
72, 6eqeltrid 2832 1 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3438  c0 4286  ifcif 4478   cuni 4861  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  Oncon0 6311  Lim wlim 6312   Fn wfn 6481  cfv 6486  recscrecs 8300  reccrdg 8338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339
This theorem is referenced by:  rdgsucg  8352  rdglimg  8354
  Copyright terms: Public domain W3C validator