Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fr0g | Structured version Visualization version GIF version |
Description: The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) |
Ref | Expression |
---|---|
fr0g | ⊢ (𝐴 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7807 | . . 3 ⊢ ∅ ∈ ω | |
2 | fvres 6848 | . . 3 ⊢ (∅ ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅) |
4 | rdg0g 8332 | . 2 ⊢ (𝐴 ∈ 𝐵 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | |
5 | 3, 4 | eqtrid 2789 | 1 ⊢ (𝐴 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∅c0 4273 ↾ cres 5626 ‘cfv 6483 ωcom 7784 reccrdg 8314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 |
This theorem is referenced by: unblem2 9165 dffi3 9292 inf0 9482 inf3lemb 9486 trcl 9589 alephfplem1 9965 infpssrlem1 10164 fin23lem34 10207 ituni0 10279 hsmexlem7 10284 axdclem2 10381 wunex2 10599 wuncval2 10608 peano5nni 12081 1nn 12089 om2uz0i 13772 om2uzrdg 13781 uzrdg0i 13784 neibastop2lem 34686 |
Copyright terms: Public domain | W3C validator |