![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fr0g | Structured version Visualization version GIF version |
Description: The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) |
Ref | Expression |
---|---|
fr0g | ⊢ (𝐴 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7876 | . . 3 ⊢ ∅ ∈ ω | |
2 | fvres 6908 | . . 3 ⊢ (∅ ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅) |
4 | rdg0g 8424 | . 2 ⊢ (𝐴 ∈ 𝐵 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | |
5 | 3, 4 | eqtrid 2785 | 1 ⊢ (𝐴 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∅c0 4322 ↾ cres 5678 ‘cfv 6541 ωcom 7852 reccrdg 8406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 |
This theorem is referenced by: unblem2 9293 dffi3 9423 inf0 9613 inf3lemb 9617 trcl 9720 alephfplem1 10096 infpssrlem1 10295 fin23lem34 10338 ituni0 10410 hsmexlem7 10415 axdclem2 10512 wunex2 10730 wuncval2 10739 peano5nni 12212 1nn 12220 om2uz0i 13909 om2uzrdg 13918 uzrdg0i 13921 neibastop2lem 35234 |
Copyright terms: Public domain | W3C validator |