![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fr0g | Structured version Visualization version GIF version |
Description: The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) |
Ref | Expression |
---|---|
fr0g | ⊢ (𝐴 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7927 | . . 3 ⊢ ∅ ∈ ω | |
2 | fvres 6939 | . . 3 ⊢ (∅ ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅) |
4 | rdg0g 8483 | . 2 ⊢ (𝐴 ∈ 𝐵 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | |
5 | 3, 4 | eqtrid 2792 | 1 ⊢ (𝐴 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∅c0 4352 ↾ cres 5702 ‘cfv 6573 ωcom 7903 reccrdg 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: unblem2 9357 dffi3 9500 inf0 9690 inf3lemb 9694 trcl 9797 alephfplem1 10173 infpssrlem1 10372 fin23lem34 10415 ituni0 10487 hsmexlem7 10492 axdclem2 10589 wunex2 10807 wuncval2 10816 peano5nni 12296 1nn 12304 om2uz0i 13998 om2uzrdg 14007 uzrdg0i 14010 noseq0 28314 noseqind 28316 om2noseq0 28320 om2noseqrdg 28328 noseqrdg0 28331 dfnns2 28380 neibastop2lem 36326 |
Copyright terms: Public domain | W3C validator |