MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgvalg Structured version   Visualization version   GIF version

Theorem rdgvalg 7857
Description: Value of the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
rdgvalg (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
Distinct variable groups:   𝑔,𝐹   𝐴,𝑔
Allowed substitution hint:   𝐵(𝑔)

Proof of Theorem rdgvalg
StepHypRef Expression
1 df-rdg 7848 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
21tfr2a 7833 1 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  Vcvv 3408  c0 4172  ifcif 4344   cuni 4708  cmpt 5004  dom cdm 5403  ran crn 5404  cres 5405  Lim wlim 6027  cfv 6185  reccrdg 7847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-iota 6149  df-fun 6187  df-fn 6188  df-fv 6193  df-wrecs 7748  df-recs 7810  df-rdg 7848
This theorem is referenced by:  rdg0  7859  rdgsucg  7861  rdglimg  7863
  Copyright terms: Public domain W3C validator