![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdg0 | Structured version Visualization version GIF version |
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
rdg.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rdg0 | ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgdmlim 8364 | . . . 4 ⊢ Lim dom rec(𝐹, 𝐴) | |
2 | limomss 7808 | . . . 4 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
4 | peano1 7826 | . . 3 ⊢ ∅ ∈ ω | |
5 | 3, 4 | sselii 3942 | . 2 ⊢ ∅ ∈ dom rec(𝐹, 𝐴) |
6 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
7 | rdgvalg 8366 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
8 | rdg.1 | . . 3 ⊢ 𝐴 ∈ V | |
9 | 6, 7, 8 | tz7.44-1 8353 | . 2 ⊢ (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
10 | 5, 9 | ax-mp 5 | 1 ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3446 ⊆ wss 3911 ∅c0 4283 ifcif 4487 ∪ cuni 4866 ↦ cmpt 5189 dom cdm 5634 ran crn 5635 Lim wlim 6319 ‘cfv 6497 ωcom 7803 reccrdg 8356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 |
This theorem is referenced by: rdg0g 8374 seqomlem1 8397 seqomlem3 8399 om0 8464 oe0 8469 oev2 8470 r10 9705 aleph0 10003 ackbij2lem2 10177 ackbij2lem3 10178 satfv0 33955 satf00 33971 rdgprc 34372 finxp0 35865 finxp1o 35866 finxpreclem4 35868 finxpreclem6 35870 |
Copyright terms: Public domain | W3C validator |