| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdg0 | Structured version Visualization version GIF version | ||
| Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdg.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rdg0 | ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim 8431 | . . . 4 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 2 | limomss 7866 | . . . 4 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 4 | peano1 7884 | . . 3 ⊢ ∅ ∈ ω | |
| 5 | 3, 4 | sselii 3955 | . 2 ⊢ ∅ ∈ dom rec(𝐹, 𝐴) |
| 6 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
| 7 | rdgvalg 8433 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
| 8 | rdg.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 9 | 6, 7, 8 | tz7.44-1 8420 | . 2 ⊢ (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
| 10 | 5, 9 | ax-mp 5 | 1 ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ifcif 4500 ∪ cuni 4883 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 Lim wlim 6353 ‘cfv 6531 ωcom 7861 reccrdg 8423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 |
| This theorem is referenced by: rdg0g 8441 seqomlem1 8464 seqomlem3 8466 om0 8529 oe0 8534 oev2 8535 r10 9782 aleph0 10080 ackbij2lem2 10253 ackbij2lem3 10254 precsexlem1 28161 precsexlem2 28162 constr0 33771 satfv0 35380 satf00 35396 rdgprc 35812 finxp0 37409 finxp1o 37410 finxpreclem4 37412 finxpreclem6 37414 |
| Copyright terms: Public domain | W3C validator |