MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdg0 Structured version   Visualization version   GIF version

Theorem rdg0 8350
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1 𝐴 ∈ V
Assertion
Ref Expression
rdg0 (rec(𝐹, 𝐴)‘∅) = 𝐴

Proof of Theorem rdg0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 8346 . . . 4 Lim dom rec(𝐹, 𝐴)
2 limomss 7811 . . . 4 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . 3 ω ⊆ dom rec(𝐹, 𝐴)
4 peano1 7829 . . 3 ∅ ∈ ω
53, 4sselii 3934 . 2 ∅ ∈ dom rec(𝐹, 𝐴)
6 eqid 2729 . . 3 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
7 rdgvalg 8348 . . 3 (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦)))
8 rdg.1 . . 3 𝐴 ∈ V
96, 7, 8tz7.44-1 8335 . 2 (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = 𝐴)
105, 9ax-mp 5 1 (rec(𝐹, 𝐴)‘∅) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  c0 4286  ifcif 4478   cuni 4861  cmpt 5176  dom cdm 5623  ran crn 5624  Lim wlim 6312  cfv 6486  ωcom 7806  reccrdg 8338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339
This theorem is referenced by:  rdg0g  8356  seqomlem1  8379  seqomlem3  8381  om0  8442  oe0  8447  oev2  8448  r10  9683  aleph0  9979  ackbij2lem2  10152  ackbij2lem3  10153  precsexlem1  28132  precsexlem2  28133  constr0  33703  satfv0  35330  satf00  35346  rdgprc  35767  finxp0  37364  finxp1o  37365  finxpreclem4  37367  finxpreclem6  37369
  Copyright terms: Public domain W3C validator