| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdg0 | Structured version Visualization version GIF version | ||
| Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdg.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rdg0 | ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim 8387 | . . . 4 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 2 | limomss 7849 | . . . 4 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 4 | peano1 7867 | . . 3 ⊢ ∅ ∈ ω | |
| 5 | 3, 4 | sselii 3945 | . 2 ⊢ ∅ ∈ dom rec(𝐹, 𝐴) |
| 6 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
| 7 | rdgvalg 8389 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
| 8 | rdg.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 9 | 6, 7, 8 | tz7.44-1 8376 | . 2 ⊢ (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
| 10 | 5, 9 | ax-mp 5 | 1 ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 ∅c0 4298 ifcif 4490 ∪ cuni 4873 ↦ cmpt 5190 dom cdm 5640 ran crn 5641 Lim wlim 6335 ‘cfv 6513 ωcom 7844 reccrdg 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 |
| This theorem is referenced by: rdg0g 8397 seqomlem1 8420 seqomlem3 8422 om0 8483 oe0 8488 oev2 8489 r10 9727 aleph0 10025 ackbij2lem2 10198 ackbij2lem3 10199 precsexlem1 28115 precsexlem2 28116 constr0 33733 satfv0 35345 satf00 35361 rdgprc 35777 finxp0 37374 finxp1o 37375 finxpreclem4 37377 finxpreclem6 37379 |
| Copyright terms: Public domain | W3C validator |