| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdg0 | Structured version Visualization version GIF version | ||
| Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdg.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rdg0 | ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim 8342 | . . . 4 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 2 | limomss 7807 | . . . 4 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 4 | peano1 7825 | . . 3 ⊢ ∅ ∈ ω | |
| 5 | 3, 4 | sselii 3927 | . 2 ⊢ ∅ ∈ dom rec(𝐹, 𝐴) |
| 6 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
| 7 | rdgvalg 8344 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
| 8 | rdg.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 9 | 6, 7, 8 | tz7.44-1 8331 | . 2 ⊢ (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
| 10 | 5, 9 | ax-mp 5 | 1 ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 ifcif 4474 ∪ cuni 4858 ↦ cmpt 5174 dom cdm 5619 ran crn 5620 Lim wlim 6312 ‘cfv 6486 ωcom 7802 reccrdg 8334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 |
| This theorem is referenced by: rdg0g 8352 seqomlem1 8375 seqomlem3 8377 om0 8438 oe0 8443 oev2 8444 r10 9668 aleph0 9964 ackbij2lem2 10137 ackbij2lem3 10138 precsexlem1 28146 precsexlem2 28147 constr0 33771 satfv0 35423 satf00 35439 rdgprc 35857 finxp0 37456 finxp1o 37457 finxpreclem4 37459 finxpreclem6 37461 |
| Copyright terms: Public domain | W3C validator |