MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsuc Structured version   Visualization version   GIF version

Theorem frsuc 8238
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
frsuc (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)))

Proof of Theorem frsuc
StepHypRef Expression
1 rdgdmlim 8219 . . . . 5 Lim dom rec(𝐹, 𝐴)
2 limomss 7692 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
43sseli 3913 . . 3 (𝐵 ∈ ω → 𝐵 ∈ dom rec(𝐹, 𝐴))
5 rdgsucg 8225 . . 3 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
64, 5syl 17 . 2 (𝐵 ∈ ω → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
7 peano2b 7704 . . 3 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fvres 6775 . . 3 (suc 𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵))
97, 8sylbi 216 . 2 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵))
10 fvres 6775 . . 3 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝐵) = (rec(𝐹, 𝐴)‘𝐵))
1110fveq2d 6760 . 2 (𝐵 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
126, 9, 113eqtr4d 2788 1 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  dom cdm 5580  cres 5582  Lim wlim 6252  suc csuc 6253  cfv 6418  ωcom 7687  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  frsucmpt  8239  frsucmptn  8240  seqomlem1  8251  seqomlem4  8254  onasuc  8320  onmsuc  8321  onesuc  8322  inf3lemc  9314  alephfplem2  9792  ackbij2lem2  9927  infpssrlem2  9991  fin23lem34  10033  fin23lem35  10034  itunisuc  10106  om2uzrdg  13604  uzrdgsuci  13608
  Copyright terms: Public domain W3C validator