MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsuc Structured version   Visualization version   GIF version

Theorem frsuc 8434
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
frsuc (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)))

Proof of Theorem frsuc
StepHypRef Expression
1 rdgdmlim 8414 . . . . 5 Lim dom rec(𝐹, 𝐴)
2 limomss 7857 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
43sseli 3978 . . 3 (𝐵 ∈ ω → 𝐵 ∈ dom rec(𝐹, 𝐴))
5 rdgsucg 8420 . . 3 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
64, 5syl 17 . 2 (𝐵 ∈ ω → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
7 peano2b 7869 . . 3 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fvres 6908 . . 3 (suc 𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵))
97, 8sylbi 216 . 2 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵))
10 fvres 6908 . . 3 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝐵) = (rec(𝐹, 𝐴)‘𝐵))
1110fveq2d 6893 . 2 (𝐵 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
126, 9, 113eqtr4d 2783 1 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wss 3948  dom cdm 5676  cres 5678  Lim wlim 6363  suc csuc 6364  cfv 6541  ωcom 7852  reccrdg 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407
This theorem is referenced by:  frsucmpt  8435  frsucmptn  8436  seqomlem1  8447  seqomlem4  8450  onasuc  8525  onmsuc  8526  onesuc  8527  inf3lemc  9618  alephfplem2  10097  ackbij2lem2  10232  infpssrlem2  10296  fin23lem34  10338  fin23lem35  10339  itunisuc  10411  om2uzrdg  13918  uzrdgsuci  13922
  Copyright terms: Public domain W3C validator