| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frsuc | Structured version Visualization version GIF version | ||
| Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| frsuc | ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim 8362 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 2 | limomss 7827 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 4 | 3 | sseli 3939 | . . 3 ⊢ (𝐵 ∈ ω → 𝐵 ∈ dom rec(𝐹, 𝐴)) |
| 5 | rdgsucg 8368 | . . 3 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐵 ∈ ω → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 7 | peano2b 7839 | . . 3 ⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω) | |
| 8 | fvres 6859 | . . 3 ⊢ (suc 𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵)) | |
| 9 | 7, 8 | sylbi 217 | . 2 ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵)) |
| 10 | fvres 6859 | . . 3 ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝐵) = (rec(𝐹, 𝐴)‘𝐵)) | |
| 11 | 10 | fveq2d 6844 | . 2 ⊢ (𝐵 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 12 | 6, 9, 11 | 3eqtr4d 2774 | 1 ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 dom cdm 5631 ↾ cres 5633 Lim wlim 6321 suc csuc 6322 ‘cfv 6499 ωcom 7822 reccrdg 8354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 |
| This theorem is referenced by: frsucmpt 8383 frsucmptn 8384 seqomlem1 8395 seqomlem4 8398 onasuc 8469 onmsuc 8470 onesuc 8471 inf3lemc 9555 alephfplem2 10034 ackbij2lem2 10168 infpssrlem2 10233 fin23lem34 10275 fin23lem35 10276 itunisuc 10348 om2uzrdg 13897 uzrdgsuci 13901 om2noseqrdg 28238 noseqrdgsuc 28242 orbitcl 44940 |
| Copyright terms: Public domain | W3C validator |