Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frsuc | Structured version Visualization version GIF version |
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
frsuc | ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgdmlim 8248 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
2 | limomss 7717 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
4 | 3 | sseli 3917 | . . 3 ⊢ (𝐵 ∈ ω → 𝐵 ∈ dom rec(𝐹, 𝐴)) |
5 | rdgsucg 8254 | . . 3 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐵 ∈ ω → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
7 | peano2b 7729 | . . 3 ⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω) | |
8 | fvres 6793 | . . 3 ⊢ (suc 𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵)) | |
9 | 7, 8 | sylbi 216 | . 2 ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵)) |
10 | fvres 6793 | . . 3 ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝐵) = (rec(𝐹, 𝐴)‘𝐵)) | |
11 | 10 | fveq2d 6778 | . 2 ⊢ (𝐵 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
12 | 6, 9, 11 | 3eqtr4d 2788 | 1 ⊢ (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 dom cdm 5589 ↾ cres 5591 Lim wlim 6267 suc csuc 6268 ‘cfv 6433 ωcom 7712 reccrdg 8240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 |
This theorem is referenced by: frsucmpt 8269 frsucmptn 8270 seqomlem1 8281 seqomlem4 8284 onasuc 8358 onmsuc 8359 onesuc 8360 inf3lemc 9384 alephfplem2 9861 ackbij2lem2 9996 infpssrlem2 10060 fin23lem34 10102 fin23lem35 10103 itunisuc 10175 om2uzrdg 13676 uzrdgsuci 13680 |
Copyright terms: Public domain | W3C validator |