MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsuc Structured version   Visualization version   GIF version

Theorem rdgsuc 7866
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
rdgsuc (𝐵 ∈ On → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))

Proof of Theorem rdgsuc
StepHypRef Expression
1 rdgfnon 7860 . . . 4 rec(𝐹, 𝐴) Fn On
2 fndm 6290 . . . 4 (rec(𝐹, 𝐴) Fn On → dom rec(𝐹, 𝐴) = On)
31, 2ax-mp 5 . . 3 dom rec(𝐹, 𝐴) = On
43eleq2i 2857 . 2 (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ 𝐵 ∈ On)
5 rdgsucg 7865 . 2 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
64, 5sylbir 227 1 (𝐵 ∈ On → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  dom cdm 5408  Oncon0 6031  suc csuc 6033   Fn wfn 6185  cfv 6190  reccrdg 7851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-wrecs 7752  df-recs 7814  df-rdg 7852
This theorem is referenced by:  rdgsucmptf  7870  oasuc  7953  omsuc  7955  oesuc  7956  alephsuc  9290  ackbij2lem3  9463  satf0suc  32186  sat1el2xp  32189  fmlasuc0  32194  rdgprc  32560  findreccl  33321  rdgsucuni  34092  rdgeqoa  34093  finxpreclem4  34116  finxpreclem6  34118
  Copyright terms: Public domain W3C validator