| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsuc | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdgsuc | ⊢ (𝐵 ∈ On → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8345 | . . . 4 ⊢ rec(𝐹, 𝐴) Fn On | |
| 2 | 1 | fndmi 6592 | . . 3 ⊢ dom rec(𝐹, 𝐴) = On |
| 3 | 2 | eleq2i 2825 | . 2 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ 𝐵 ∈ On) |
| 4 | rdgsucg 8350 | . 2 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
| 5 | 3, 4 | sylbir 235 | 1 ⊢ (𝐵 ∈ On → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 dom cdm 5621 Oncon0 6313 suc csuc 6315 ‘cfv 6488 reccrdg 8336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 |
| This theorem is referenced by: rdgsucmptf 8355 oasuc 8447 omsuc 8449 oesuc 8450 alephsuc 9968 ackbij2lem3 10140 constrsuc 33774 satfvsuc 35428 satf0suc 35443 sat1el2xp 35446 fmlasuc0 35451 rdgprc 35859 findreccl 36520 rdgsucuni 37436 rdgeqoa 37437 finxpreclem4 37461 finxpreclem6 37463 |
| Copyright terms: Public domain | W3C validator |