Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rdgsuc | Structured version Visualization version GIF version |
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
rdgsuc | ⊢ (𝐵 ∈ On → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon 8258 | . . . 4 ⊢ rec(𝐹, 𝐴) Fn On | |
2 | 1 | fndmi 6546 | . . 3 ⊢ dom rec(𝐹, 𝐴) = On |
3 | 2 | eleq2i 2831 | . 2 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ 𝐵 ∈ On) |
4 | rdgsucg 8263 | . 2 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
5 | 3, 4 | sylbir 234 | 1 ⊢ (𝐵 ∈ On → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 dom cdm 5590 Oncon0 6270 suc csuc 6272 ‘cfv 6437 reccrdg 8249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 |
This theorem is referenced by: rdgsucmptf 8268 oasuc 8363 omsuc 8365 oesuc 8366 alephsuc 9833 ackbij2lem3 10006 satfvsuc 33332 satf0suc 33347 sat1el2xp 33350 fmlasuc0 33355 rdgprc 33779 findreccl 34651 rdgsucuni 35549 rdgeqoa 35550 finxpreclem4 35574 finxpreclem6 35576 |
Copyright terms: Public domain | W3C validator |