MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglim2a Structured version   Visualization version   GIF version

Theorem rdglim2a 8404
Description: The value of the recursive definition generator at a limit ordinal, in terms of indexed union of all smaller values. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
rdglim2a ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = 𝑥𝐵 (rec(𝐹, 𝐴)‘𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem rdglim2a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rdglim2 8403 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
2 fvex 6874 . . 3 (rec(𝐹, 𝐴)‘𝑥) ∈ V
32dfiun2 5000 . 2 𝑥𝐵 (rec(𝐹, 𝐴)‘𝑥) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)}
41, 3eqtr4di 2783 1 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = 𝑥𝐵 (rec(𝐹, 𝐴)‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054   cuni 4874   ciun 4958  Lim wlim 6336  cfv 6514  reccrdg 8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381
This theorem is referenced by:  oalim  8499  omlim  8500  oelim  8501  alephlim  10027  constrlim  33736  satom  35350  fmla  35375  rdgellim  37371  rdgssun  37373  exrecfnlem  37374
  Copyright terms: Public domain W3C validator