| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgfun | Structured version Visualization version GIF version | ||
| Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdgfun | ⊢ Fun rec(𝐹, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rdg 8337 | . . 3 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) | |
| 2 | 1 | tfr1a 8321 | . 2 ⊢ (Fun rec(𝐹, 𝐴) ∧ Lim dom rec(𝐹, 𝐴)) |
| 3 | 2 | simpli 483 | 1 ⊢ Fun rec(𝐹, 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3437 ∅c0 4282 ifcif 4476 ∪ cuni 4860 ↦ cmpt 5176 dom cdm 5621 ran crn 5622 Lim wlim 6314 Fun wfun 6482 ‘cfv 6488 reccrdg 8336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 |
| This theorem is referenced by: rdgsucg 8350 rdglimg 8352 frfnom 8362 ttrclse 9626 r1funlim 9668 ackbij2 10142 itunifval 10316 wunex2 10638 nnexALT 12136 axdc4uzlem 13894 seqex 13914 precsexlem10 28157 precsexlem11 28158 seqsex 28218 noseqex 28222 isconstr 33772 satf 35420 orbitex 45075 |
| Copyright terms: Public domain | W3C validator |