Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmopab | Structured version Visualization version GIF version |
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
dmopab | ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 5144 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | nfopab2 5145 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 1, 2 | dfdmf 5805 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
4 | df-br 5075 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
5 | opabidw 5437 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
7 | 6 | exbii 1850 | . . 3 ⊢ (∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑) |
8 | 7 | abbii 2808 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑} |
9 | 3, 8 | eqtri 2766 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 〈cop 4567 class class class wbr 5074 {copab 5136 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-dm 5599 |
This theorem is referenced by: dmopabelb 5825 dmopabss 5827 dmopab3 5828 mptfnf 6568 opabiotadm 6850 fndmin 6922 dmoprab 7376 zfrep6 7797 hartogslem1 9301 dmttrcl 9479 rankf 9552 dfac3 9877 axdc2lem 10204 shftdm 14782 dfiso2 17484 adjeu 30251 satfdm 33331 fmla0 33344 fmlasuc0 33346 |
Copyright terms: Public domain | W3C validator |