| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopab | Structured version Visualization version GIF version | ||
| Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| dmopab | ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 5177 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab2 5178 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 1, 2 | dfdmf 5860 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
| 4 | df-br 5108 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | opabidw 5484 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑) |
| 8 | 7 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑} |
| 9 | 3, 8 | eqtri 2752 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 〈cop 4595 class class class wbr 5107 {copab 5169 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-dm 5648 |
| This theorem is referenced by: dmopabelb 5880 dmopabss 5882 dmopab3 5883 mptfnf 6653 opabiotadm 6942 fndmin 7017 dmoprab 7492 zfrep6 7933 hartogslem1 9495 dmttrcl 9674 rankf 9747 dfac3 10074 axdc2lem 10401 shftdm 15037 dfiso2 17734 adjeu 31818 satfdm 35356 fmla0 35369 fmlasuc0 35371 |
| Copyright terms: Public domain | W3C validator |