![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmopab | Structured version Visualization version GIF version |
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
dmopab | ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 5219 | . . 3 ⊢ Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | nfopab2 5220 | . . 3 ⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
3 | 1, 2 | dfdmf 5897 | . 2 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} |
4 | df-br 5150 | . . . . 5 ⊢ (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
5 | opabidw 5525 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) | |
6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ 𝜑) |
7 | 6 | exbii 1851 | . . 3 ⊢ (∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑) |
8 | 7 | abbii 2803 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑} |
9 | 3, 8 | eqtri 2761 | 1 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ⟨cop 4635 class class class wbr 5149 {copab 5211 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-dm 5687 |
This theorem is referenced by: dmopabelb 5917 dmopabss 5919 dmopab3 5920 mptfnf 6686 opabiotadm 6974 fndmin 7047 dmoprab 7510 zfrep6 7941 hartogslem1 9537 dmttrcl 9716 rankf 9789 dfac3 10116 axdc2lem 10443 shftdm 15018 dfiso2 17719 adjeu 31142 satfdm 34360 fmla0 34373 fmlasuc0 34375 |
Copyright terms: Public domain | W3C validator |