| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopab | Structured version Visualization version GIF version | ||
| Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| dmopab | ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 5165 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab2 5166 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 1, 2 | dfdmf 5843 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
| 4 | df-br 5096 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | opabidw 5471 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑) |
| 8 | 7 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑} |
| 9 | 3, 8 | eqtri 2752 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 〈cop 4585 class class class wbr 5095 {copab 5157 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-dm 5633 |
| This theorem is referenced by: dmopabelb 5863 dmopabss 5865 dmopab3 5866 mptfnf 6621 opabiotadm 6908 fndmin 6983 dmoprab 7456 zfrep6 7897 hartogslem1 9453 dmttrcl 9636 rankf 9709 dfac3 10034 axdc2lem 10361 shftdm 14996 dfiso2 17697 adjeu 31851 satfdm 35341 fmla0 35354 fmlasuc0 35356 |
| Copyright terms: Public domain | W3C validator |