| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopab | Structured version Visualization version GIF version | ||
| Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| dmopab | ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 5161 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab2 5162 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 1, 2 | dfdmf 5836 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
| 4 | df-br 5092 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | opabidw 5464 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 7 | 6 | exbii 1849 | . . 3 ⊢ (∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑) |
| 8 | 7 | abbii 2798 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑} |
| 9 | 3, 8 | eqtri 2754 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 〈cop 4582 class class class wbr 5091 {copab 5153 dom cdm 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-dm 5626 |
| This theorem is referenced by: dmopabelb 5856 dmopabss 5858 dmopab3 5859 mptfnf 6616 opabiotadm 6903 fndmin 6978 dmoprab 7449 zfrep6 7887 hartogslem1 9428 dmttrcl 9611 rankf 9684 dfac3 10009 axdc2lem 10336 shftdm 14975 dfiso2 17676 adjeu 31864 satfdm 35401 fmla0 35414 fmlasuc0 35416 |
| Copyright terms: Public domain | W3C validator |