MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopab Structured version   Visualization version   GIF version

Theorem dmopab 5882
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
dmopab dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopab
StepHypRef Expression
1 nfopab1 5180 . . 3 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab2 5181 . . 3 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
31, 2dfdmf 5863 . 2 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦}
4 df-br 5111 . . . . 5 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opabidw 5487 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
64, 5bitri 275 . . . 4 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
76exbii 1848 . . 3 (∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑)
87abbii 2797 . 2 {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑}
93, 8eqtri 2753 1 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  {cab 2708  cop 4598   class class class wbr 5110  {copab 5172  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-dm 5651
This theorem is referenced by:  dmopabelb  5883  dmopabss  5885  dmopab3  5886  mptfnf  6656  opabiotadm  6945  fndmin  7020  dmoprab  7495  zfrep6  7936  hartogslem1  9502  dmttrcl  9681  rankf  9754  dfac3  10081  axdc2lem  10408  shftdm  15044  dfiso2  17741  adjeu  31825  satfdm  35363  fmla0  35376  fmlasuc0  35378
  Copyright terms: Public domain W3C validator