![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmopab | Structured version Visualization version GIF version |
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
dmopab | ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 5218 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | nfopab2 5219 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 1, 2 | dfdmf 5910 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
4 | df-br 5149 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
5 | opabidw 5534 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
7 | 6 | exbii 1845 | . . 3 ⊢ (∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑) |
8 | 7 | abbii 2807 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑} |
9 | 3, 8 | eqtri 2763 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 〈cop 4637 class class class wbr 5148 {copab 5210 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-dm 5699 |
This theorem is referenced by: dmopabelb 5930 dmopabss 5932 dmopab3 5933 mptfnf 6704 opabiotadm 6990 fndmin 7065 dmoprab 7535 zfrep6 7978 hartogslem1 9580 dmttrcl 9759 rankf 9832 dfac3 10159 axdc2lem 10486 shftdm 15107 dfiso2 17820 adjeu 31918 satfdm 35354 fmla0 35367 fmlasuc0 35369 |
Copyright terms: Public domain | W3C validator |