MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sniota Structured version   Visualization version   GIF version

Theorem sniota 6339
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2667 . 2 𝑥∃!𝑥𝜑
2 nfab1 2976 . 2 𝑥{𝑥𝜑}
3 nfiota1 6309 . . 3 𝑥(℩𝑥𝜑)
43nfsn 4635 . 2 𝑥{(℩𝑥𝜑)}
5 iota1 6325 . . . 4 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
6 eqcom 2825 . . . 4 ((℩𝑥𝜑) = 𝑥𝑥 = (℩𝑥𝜑))
75, 6syl6bb 288 . . 3 (∃!𝑥𝜑 → (𝜑𝑥 = (℩𝑥𝜑)))
8 abid 2800 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 velsn 4573 . . 3 (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑))
107, 8, 93bitr4g 315 . 2 (∃!𝑥𝜑 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
111, 2, 4, 10eqrd 3983 1 (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  ∃!weu 2646  {cab 2796  {csn 4557  cio 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-v 3494  df-sbc 3770  df-un 3938  df-sn 4558  df-pr 4560  df-uni 4831  df-iota 6307
This theorem is referenced by:  snriota  7136  fnimasnd  38999
  Copyright terms: Public domain W3C validator