Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sniota | Structured version Visualization version GIF version |
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2588 | . 2 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
2 | nfab1 2908 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | nfiota1 6378 | . . 3 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
4 | 3 | nfsn 4640 | . 2 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
5 | iota1 6395 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
6 | eqcom 2745 | . . . 4 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
7 | 5, 6 | bitrdi 286 | . . 3 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
8 | abid 2719 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | velsn 4574 | . . 3 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) | |
10 | 7, 8, 9 | 3bitr4g 313 | . 2 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
11 | 1, 2, 4, 10 | eqrd 3936 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃!weu 2568 {cab 2715 {csn 4558 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 |
This theorem is referenced by: snriota 7246 |
Copyright terms: Public domain | W3C validator |