![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sniota | Structured version Visualization version GIF version |
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2583 | . 2 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
2 | nfab1 2906 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | nfiota1 6498 | . . 3 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
4 | 3 | nfsn 4712 | . 2 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
5 | iota1 6521 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
6 | eqcom 2740 | . . . 4 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
8 | abid 2714 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | velsn 4645 | . . 3 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) | |
10 | 7, 8, 9 | 3bitr4g 314 | . 2 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
11 | 1, 2, 4, 10 | eqrd 4002 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∃!weu 2563 {cab 2710 {csn 4629 ℩cio 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 |
This theorem is referenced by: snriota 7399 |
Copyright terms: Public domain | W3C validator |