MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sniota Structured version   Visualization version   GIF version

Theorem sniota 6502
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2581 . 2 𝑥∃!𝑥𝜑
2 nfab1 2893 . 2 𝑥{𝑥𝜑}
3 nfiota1 6466 . . 3 𝑥(℩𝑥𝜑)
43nfsn 4671 . 2 𝑥{(℩𝑥𝜑)}
5 iota1 6488 . . . 4 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
6 eqcom 2736 . . . 4 ((℩𝑥𝜑) = 𝑥𝑥 = (℩𝑥𝜑))
75, 6bitrdi 287 . . 3 (∃!𝑥𝜑 → (𝜑𝑥 = (℩𝑥𝜑)))
8 abid 2711 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 velsn 4605 . . 3 (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑))
107, 8, 93bitr4g 314 . 2 (∃!𝑥𝜑 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
111, 2, 4, 10eqrd 3966 1 (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ∃!weu 2561  {cab 2707  {csn 4589  cio 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592  df-uni 4872  df-iota 6464
This theorem is referenced by:  snriota  7377
  Copyright terms: Public domain W3C validator