MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sniota Structured version   Visualization version   GIF version

Theorem sniota 6423
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2590 . 2 𝑥∃!𝑥𝜑
2 nfab1 2911 . 2 𝑥{𝑥𝜑}
3 nfiota1 6392 . . 3 𝑥(℩𝑥𝜑)
43nfsn 4649 . 2 𝑥{(℩𝑥𝜑)}
5 iota1 6409 . . . 4 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
6 eqcom 2747 . . . 4 ((℩𝑥𝜑) = 𝑥𝑥 = (℩𝑥𝜑))
75, 6bitrdi 287 . . 3 (∃!𝑥𝜑 → (𝜑𝑥 = (℩𝑥𝜑)))
8 abid 2721 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 velsn 4583 . . 3 (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑))
107, 8, 93bitr4g 314 . 2 (∃!𝑥𝜑 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
111, 2, 4, 10eqrd 3945 1 (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  ∃!weu 2570  {cab 2717  {csn 4567  cio 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-v 3433  df-un 3897  df-in 3899  df-ss 3909  df-sn 4568  df-pr 4570  df-uni 4846  df-iota 6390
This theorem is referenced by:  snriota  7262
  Copyright terms: Public domain W3C validator