| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sniota | Structured version Visualization version GIF version | ||
| Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2582 | . 2 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 2 | nfab1 2894 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 3 | nfiota1 6468 | . . 3 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
| 4 | 3 | nfsn 4673 | . 2 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
| 5 | iota1 6490 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
| 6 | eqcom 2737 | . . . 4 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
| 7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
| 8 | abid 2712 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 9 | velsn 4607 | . . 3 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | . 2 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 11 | 1, 2, 4, 10 | eqrd 3968 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 {cab 2708 {csn 4591 ℩cio 6464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-un 3921 df-ss 3933 df-sn 4592 df-pr 4594 df-uni 4874 df-iota 6466 |
| This theorem is referenced by: snriota 7379 |
| Copyright terms: Public domain | W3C validator |