| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sniota | Structured version Visualization version GIF version | ||
| Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2585 | . 2 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 2 | nfab1 2898 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 3 | nfiota1 6447 | . . 3 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
| 4 | 3 | nfsn 4661 | . 2 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
| 5 | iota1 6468 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
| 6 | eqcom 2740 | . . . 4 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
| 7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
| 8 | abid 2715 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 9 | velsn 4593 | . . 3 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | . 2 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 11 | 1, 2, 4, 10 | eqrd 3951 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃!weu 2565 {cab 2711 {csn 4577 ℩cio 6443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-v 3440 df-un 3904 df-ss 3916 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6445 |
| This theorem is referenced by: snriota 7345 |
| Copyright terms: Public domain | W3C validator |