![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbiota | Structured version Visualization version GIF version |
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbiota | ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3896 | . . . 4 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦𝜑)) | |
2 | dfsbcq2 3780 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | iotabidv 6527 | . . . 4 ⊢ (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
4 | 1, 3 | eqeq12d 2748 | . . 3 ⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))) |
5 | vex 3478 | . . . 4 ⊢ 𝑧 ∈ V | |
6 | nfs1v 2153 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
7 | 6 | nfiotaw 6499 | . . . 4 ⊢ Ⅎ𝑥(℩𝑦[𝑧 / 𝑥]𝜑) |
8 | sbequ12 2243 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
9 | 8 | iotabidv 6527 | . . . 4 ⊢ (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)) |
10 | 5, 7, 9 | csbief 3928 | . . 3 ⊢ ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) |
11 | 4, 10 | vtoclg 3556 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
12 | csbprc 4406 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = ∅) | |
13 | sbcex 3787 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
14 | 13 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜑) |
15 | 14 | nexdv 1939 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑦[𝐴 / 𝑥]𝜑) |
16 | euex 2571 | . . . . 5 ⊢ (∃!𝑦[𝐴 / 𝑥]𝜑 → ∃𝑦[𝐴 / 𝑥]𝜑) | |
17 | 16 | con3i 154 | . . . 4 ⊢ (¬ ∃𝑦[𝐴 / 𝑥]𝜑 → ¬ ∃!𝑦[𝐴 / 𝑥]𝜑) |
18 | iotanul 6521 | . . . 4 ⊢ (¬ ∃!𝑦[𝐴 / 𝑥]𝜑 → (℩𝑦[𝐴 / 𝑥]𝜑) = ∅) | |
19 | 15, 17, 18 | 3syl 18 | . . 3 ⊢ (¬ 𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝜑) = ∅) |
20 | 12, 19 | eqtr4d 2775 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
21 | 11, 20 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∃wex 1781 [wsb 2067 ∈ wcel 2106 ∃!weu 2562 Vcvv 3474 [wsbc 3777 ⦋csb 3893 ∅c0 4322 ℩cio 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-uni 4909 df-iota 6495 |
This theorem is referenced by: csbfv12 6939 |
Copyright terms: Public domain | W3C validator |