MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiota Structured version   Visualization version   GIF version

Theorem csbiota 6411
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbiota 𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem csbiota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3831 . . . 4 (𝑧 = 𝐴𝑧 / 𝑥(℩𝑦𝜑) = 𝐴 / 𝑥(℩𝑦𝜑))
2 dfsbcq2 3714 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32iotabidv 6402 . . . 4 (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
41, 3eqeq12d 2754 . . 3 (𝑧 = 𝐴 → (𝑧 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ 𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)))
5 vex 3426 . . . 4 𝑧 ∈ V
6 nfs1v 2155 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
76nfiotaw 6380 . . . 4 𝑥(℩𝑦[𝑧 / 𝑥]𝜑)
8 sbequ12 2247 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
98iotabidv 6402 . . . 4 (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑))
105, 7, 9csbief 3863 . . 3 𝑧 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)
114, 10vtoclg 3495 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
12 csbprc 4337 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(℩𝑦𝜑) = ∅)
13 sbcex 3721 . . . . . 6 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1413con3i 154 . . . . 5 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜑)
1514nexdv 1940 . . . 4 𝐴 ∈ V → ¬ ∃𝑦[𝐴 / 𝑥]𝜑)
16 euex 2577 . . . . 5 (∃!𝑦[𝐴 / 𝑥]𝜑 → ∃𝑦[𝐴 / 𝑥]𝜑)
1716con3i 154 . . . 4 (¬ ∃𝑦[𝐴 / 𝑥]𝜑 → ¬ ∃!𝑦[𝐴 / 𝑥]𝜑)
18 iotanul 6396 . . . 4 (¬ ∃!𝑦[𝐴 / 𝑥]𝜑 → (℩𝑦[𝐴 / 𝑥]𝜑) = ∅)
1915, 17, 183syl 18 . . 3 𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝜑) = ∅)
2012, 19eqtr4d 2781 . 2 𝐴 ∈ V → 𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
2111, 20pm2.61i 182 1 𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  ∃!weu 2568  Vcvv 3422  [wsbc 3711  csb 3828  c0 4253  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-uni 4837  df-iota 6376
This theorem is referenced by:  csbfv12  6799
  Copyright terms: Public domain W3C validator