| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbiota | Structured version Visualization version GIF version | ||
| Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbiota | ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3849 | . . . 4 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦𝜑)) | |
| 2 | dfsbcq2 3740 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | iotabidv 6472 | . . . 4 ⊢ (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | eqeq12d 2749 | . . 3 ⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))) |
| 5 | vex 3441 | . . . 4 ⊢ 𝑧 ∈ V | |
| 6 | nfs1v 2161 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 7 | 6 | nfiotaw 6448 | . . . 4 ⊢ Ⅎ𝑥(℩𝑦[𝑧 / 𝑥]𝜑) |
| 8 | sbequ12 2256 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 9 | 8 | iotabidv 6472 | . . . 4 ⊢ (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)) |
| 10 | 5, 7, 9 | csbief 3880 | . . 3 ⊢ ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) |
| 11 | 4, 10 | vtoclg 3508 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
| 12 | csbprc 4358 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = ∅) | |
| 13 | sbcex 3747 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 14 | 13 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜑) |
| 15 | 14 | nexdv 1937 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑦[𝐴 / 𝑥]𝜑) |
| 16 | euex 2574 | . . . . 5 ⊢ (∃!𝑦[𝐴 / 𝑥]𝜑 → ∃𝑦[𝐴 / 𝑥]𝜑) | |
| 17 | 16 | con3i 154 | . . . 4 ⊢ (¬ ∃𝑦[𝐴 / 𝑥]𝜑 → ¬ ∃!𝑦[𝐴 / 𝑥]𝜑) |
| 18 | iotanul 6468 | . . . 4 ⊢ (¬ ∃!𝑦[𝐴 / 𝑥]𝜑 → (℩𝑦[𝐴 / 𝑥]𝜑) = ∅) | |
| 19 | 15, 17, 18 | 3syl 18 | . . 3 ⊢ (¬ 𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝜑) = ∅) |
| 20 | 12, 19 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
| 21 | 11, 20 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∃wex 1780 [wsb 2067 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 [wsbc 3737 ⦋csb 3846 ∅c0 4282 ℩cio 6442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-ss 3915 df-nul 4283 df-sn 4578 df-uni 4861 df-iota 6444 |
| This theorem is referenced by: csbfv12 6875 |
| Copyright terms: Public domain | W3C validator |