![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankopb | Structured version Visualization version GIF version |
Description: The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
rankopb | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 4876 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
2 | 1 | fveq2d 6911 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘〈𝐴, 𝐵〉) = (rank‘{{𝐴}, {𝐴, 𝐵}})) |
3 | snwf 9847 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
4 | prwf 9849 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → {𝐴, 𝐵} ∈ ∪ (𝑅1 “ On)) | |
5 | rankprb 9889 | . . 3 ⊢ (({𝐴} ∈ ∪ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ ∪ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵}))) | |
6 | 3, 4, 5 | syl2an2r 685 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵}))) |
7 | snsspr1 4819 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
8 | ssequn1 4196 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}) | |
9 | 7, 8 | mpbi 230 | . . . . 5 ⊢ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵} |
10 | 9 | fveq2i 6910 | . . . 4 ⊢ (rank‘({𝐴} ∪ {𝐴, 𝐵})) = (rank‘{𝐴, 𝐵}) |
11 | rankunb 9888 | . . . . 5 ⊢ (({𝐴} ∈ ∪ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵}))) | |
12 | 3, 4, 11 | syl2an2r 685 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵}))) |
13 | rankprb 9889 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) | |
14 | 10, 12, 13 | 3eqtr3a 2799 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
15 | suceq 6452 | . . 3 ⊢ (((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
17 | 2, 6, 16 | 3eqtrd 2779 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 {csn 4631 {cpr 4633 〈cop 4637 ∪ cuni 4912 “ cima 5692 Oncon0 6386 suc csuc 6388 ‘cfv 6563 𝑅1cr1 9800 rankcrnk 9801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 df-rank 9803 |
This theorem is referenced by: rankop 9896 |
Copyright terms: Public domain | W3C validator |