MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankopb Structured version   Visualization version   GIF version

Theorem rankopb 9842
Description: The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankopb
StepHypRef Expression
1 dfopg 4863 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21fveq2d 6885 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = (rank‘{{𝐴}, {𝐴, 𝐵}}))
3 snwf 9799 . . 3 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
4 prwf 9801 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴, 𝐵} ∈ (𝑅1 “ On))
5 rankprb 9841 . . 3 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
63, 4, 5syl2an2r 682 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
7 snsspr1 4809 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
8 ssequn1 4172 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
97, 8mpbi 229 . . . . 5 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
109fveq2i 6884 . . . 4 (rank‘({𝐴} ∪ {𝐴, 𝐵})) = (rank‘{𝐴, 𝐵})
11 rankunb 9840 . . . . 5 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
123, 4, 11syl2an2r 682 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
13 rankprb 9841 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1410, 12, 133eqtr3a 2788 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
15 suceq 6420 . . 3 (((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1614, 15syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
172, 6, 163eqtrd 2768 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cun 3938  wss 3940  {csn 4620  {cpr 4622  cop 4626   cuni 4899  cima 5669  Oncon0 6354  suc csuc 6356  cfv 6533  𝑅1cr1 9752  rankcrnk 9753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-r1 9754  df-rank 9755
This theorem is referenced by:  rankop  9848
  Copyright terms: Public domain W3C validator