MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankopb Structured version   Visualization version   GIF version

Theorem rankopb 9751
Description: The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankopb
StepHypRef Expression
1 dfopg 4822 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21fveq2d 6832 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = (rank‘{{𝐴}, {𝐴, 𝐵}}))
3 snwf 9708 . . 3 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
4 prwf 9710 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴, 𝐵} ∈ (𝑅1 “ On))
5 rankprb 9750 . . 3 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
63, 4, 5syl2an2r 685 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
7 snsspr1 4765 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
8 ssequn1 4135 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
97, 8mpbi 230 . . . . 5 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
109fveq2i 6831 . . . 4 (rank‘({𝐴} ∪ {𝐴, 𝐵})) = (rank‘{𝐴, 𝐵})
11 rankunb 9749 . . . . 5 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
123, 4, 11syl2an2r 685 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
13 rankprb 9750 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1410, 12, 133eqtr3a 2790 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
15 suceq 6380 . . 3 (((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1614, 15syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
172, 6, 163eqtrd 2770 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3895  wss 3897  {csn 4575  {cpr 4577  cop 4581   cuni 4858  cima 5622  Oncon0 6312  suc csuc 6314  cfv 6487  𝑅1cr1 9661  rankcrnk 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9663  df-rank 9664
This theorem is referenced by:  rankop  9757
  Copyright terms: Public domain W3C validator