![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruop | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains ordered pairs of its elements. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
gruop | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ⟨𝐴, 𝐵⟩ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 4870 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) | |
2 | 1 | 3adant1 1128 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) |
3 | simp1 1134 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
4 | grusn 10801 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴} ∈ 𝑈) | |
5 | 4 | 3adant3 1130 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴} ∈ 𝑈) |
6 | grupr 10794 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) | |
7 | grupr 10794 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ {𝐴} ∈ 𝑈 ∧ {𝐴, 𝐵} ∈ 𝑈) → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈) | |
8 | 3, 5, 6, 7 | syl3anc 1369 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈) |
9 | 2, 8 | eqeltrd 2831 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ⟨𝐴, 𝐵⟩ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 {csn 4627 {cpr 4629 ⟨cop 4633 Univcgru 10787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-tr 5265 df-iota 6494 df-fv 6550 df-ov 7414 df-gru 10788 |
This theorem is referenced by: gruf 10808 |
Copyright terms: Public domain | W3C validator |