MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruop Structured version   Visualization version   GIF version

Theorem gruop 10802
Description: A Grothendieck universe contains ordered pairs of its elements. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
gruop ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ ∈ 𝑈)

Proof of Theorem gruop
StepHypRef Expression
1 dfopg 4870 . . 3 ((𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
213adant1 1128 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
3 simp1 1134 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
4 grusn 10801 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → {𝐴} ∈ 𝑈)
543adant3 1130 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴} ∈ 𝑈)
6 grupr 10794 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
7 grupr 10794 . . 3 ((𝑈 ∈ Univ ∧ {𝐴} ∈ 𝑈 ∧ {𝐴, 𝐵} ∈ 𝑈) → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈)
83, 5, 6, 7syl3anc 1369 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈)
92, 8eqeltrd 2831 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2104  {csn 4627  {cpr 4629  cop 4633  Univcgru 10787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-tr 5265  df-iota 6494  df-fv 6550  df-ov 7414  df-gru 10788
This theorem is referenced by:  gruf  10808
  Copyright terms: Public domain W3C validator