| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrn3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrn3 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 5899 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 2 | df-br 5144 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 4 | 3 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 5 | 1, 4 | eqtri 2765 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 〈cop 4632 class class class wbr 5143 ran crn 5686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-cnv 5693 df-dm 5695 df-rn 5696 |
| This theorem is referenced by: elrn2g 5901 imadmrn 6088 imassrn 6089 csbrngVD 44916 |
| Copyright terms: Public domain | W3C validator |