![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrn3 | Structured version Visualization version GIF version |
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfrn3 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5888 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
2 | df-br 5149 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 2 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
4 | 3 | abbii 2801 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} |
5 | 1, 4 | eqtri 2759 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ⟨cop 4634 class class class wbr 5148 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: elrn2g 5890 imadmrn 6069 imassrn 6070 csbrngVD 44120 |
Copyright terms: Public domain | W3C validator |