MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn3 Structured version   Visualization version   GIF version

Theorem dfrn3 5828
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfrn3 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn3
StepHypRef Expression
1 dfrn2 5827 . 2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
2 df-br 5090 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32exbii 1849 . . 3 (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
43abbii 2798 . 2 {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
51, 4eqtri 2754 1 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  wcel 2111  {cab 2709  cop 4579   class class class wbr 5089  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  elrn2g  5829  imadmrn  6018  imassrn  6019  csbrngVD  44936
  Copyright terms: Public domain W3C validator