Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfrn3 | Structured version Visualization version GIF version |
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfrn3 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5786 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
2 | df-br 5071 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | 2 | exbii 1851 | . . 3 ⊢ (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
5 | 1, 4 | eqtri 2766 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 〈cop 4564 class class class wbr 5070 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: elrn2g 5788 imadmrn 5968 imassrn 5969 csbrngVD 42405 |
Copyright terms: Public domain | W3C validator |