MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn3 Structured version   Visualization version   GIF version

Theorem dfrn3 5758
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfrn3 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn3
StepHypRef Expression
1 dfrn2 5757 . 2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
2 df-br 5054 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32exbii 1855 . . 3 (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
43abbii 2808 . 2 {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
51, 4eqtri 2765 1 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wex 1787  wcel 2110  {cab 2714  cop 4547   class class class wbr 5053  ran crn 5552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-cnv 5559  df-dm 5561  df-rn 5562
This theorem is referenced by:  elrn2g  5759  imadmrn  5939  imassrn  5940  csbrngVD  42189
  Copyright terms: Public domain W3C validator