MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadmrn Structured version   Visualization version   GIF version

Theorem imadmrn 5996
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn (𝐴 “ dom 𝐴) = ran 𝐴

Proof of Theorem imadmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3445 . . . . . . 7 𝑥 ∈ V
2 vex 3445 . . . . . . 7 𝑦 ∈ V
31, 2opeldm 5836 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
43pm4.71i 560 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴))
5 ancom 461 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
64, 5bitr2i 275 . . . 4 ((𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
76exbii 1849 . . 3 (∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
87abbii 2807 . 2 {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
9 dfima3 5989 . 2 (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
10 dfrn3 5818 . 2 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
118, 9, 103eqtr4i 2775 1 (𝐴 “ dom 𝐴) = ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1540  wex 1780  wcel 2105  {cab 2714  cop 4577  dom cdm 5607  ran crn 5608  cima 5610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-xp 5613  df-cnv 5615  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620
This theorem is referenced by:  cnvimarndm  6007  foima  6730  fimadmfo  6734  f1imacnv  6769  fsn2  7047  resfunexg  7130  elunirnALT  7164  fnexALT  7838  uniqs2  8616  mapsnd  8722  pwfilem  9019  phplem2  9050  php3  9054  phplem4OLD  9062  php3OLD  9066  jech9.3  9643  fin4en1  10138  retopbas  23996  plyeq0  25444  rnelshi  30530  s2rn  31326  s3rn  31328  rhmimaidl  31714  bday0s  34080  poimirlem3  35836  poimirlem30  35863
  Copyright terms: Public domain W3C validator