| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadmrn | Structured version Visualization version GIF version | ||
| Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opeldm 5874 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 4 | 3 | pm4.71i 559 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
| 5 | ancom 460 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 9 | dfima3 6037 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
| 10 | dfrn3 5856 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 11 | 8, 9, 10 | 3eqtr4i 2763 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 〈cop 4598 dom cdm 5641 ran crn 5642 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: cnvimarndm 6057 f1imadifssran 6605 foima 6780 fimadmfo 6784 f1imacnv 6819 fsn2 7111 resfunexg 7192 elunirnALT 7229 fnexALT 7932 uniqs2 8753 mapsnd 8862 phplem2 9175 php3 9179 pwfilem 9274 jech9.3 9774 fin4en1 10269 retopbas 24655 plyeq0 26123 bday0s 27747 rnelshi 31995 s2rnOLD 32872 s3rnOLD 32874 rndrhmcl 33253 qusrn 33387 rhmimaidl 33410 ply1degltdimlem 33625 poimirlem3 37624 poimirlem30 37651 cycl3grtri 47950 |
| Copyright terms: Public domain | W3C validator |