![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imadmrn | Structured version Visualization version GIF version |
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 3479 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opeldm 5908 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
4 | 3 | pm4.71i 561 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
5 | ancom 462 | . . . . 5 ⊢ ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) | |
6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) |
7 | 6 | exbii 1851 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
8 | 7 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} |
9 | dfima3 6063 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} | |
10 | dfrn3 5890 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} | |
11 | 8, 9, 10 | 3eqtr4i 2771 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ⟨cop 4635 dom cdm 5677 ran crn 5678 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: cnvimarndm 6082 foima 6811 fimadmfo 6815 f1imacnv 6850 fsn2 7134 resfunexg 7217 elunirnALT 7251 fnexALT 7937 uniqs2 8773 mapsnd 8880 pwfilem 9177 phplem2 9208 php3 9212 phplem4OLD 9220 php3OLD 9224 jech9.3 9809 fin4en1 10304 retopbas 24277 plyeq0 25725 bday0s 27329 rnelshi 31312 s2rn 32110 s3rn 32112 rndrhmcl 32396 qusrn 32520 rhmimaidl 32550 ply1degltdimlem 32707 poimirlem3 36491 poimirlem30 36518 |
Copyright terms: Public domain | W3C validator |