| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadmrn | Structured version Visualization version GIF version | ||
| Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opeldm 5871 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 4 | 3 | pm4.71i 559 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
| 5 | ancom 460 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 9 | dfima3 6034 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
| 10 | dfrn3 5853 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 11 | 8, 9, 10 | 3eqtr4i 2762 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 〈cop 4595 dom cdm 5638 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: cnvimarndm 6054 f1imadifssran 6602 foima 6777 fimadmfo 6781 f1imacnv 6816 fsn2 7108 resfunexg 7189 elunirnALT 7226 fnexALT 7929 uniqs2 8750 mapsnd 8859 phplem2 9169 php3 9173 pwfilem 9267 jech9.3 9767 fin4en1 10262 retopbas 24648 plyeq0 26116 bday0s 27740 rnelshi 31988 s2rnOLD 32865 s3rnOLD 32867 rndrhmcl 33246 qusrn 33380 rhmimaidl 33403 ply1degltdimlem 33618 poimirlem3 37617 poimirlem30 37644 cycl3grtri 47946 |
| Copyright terms: Public domain | W3C validator |