![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imadmrn | Structured version Visualization version GIF version |
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opeldm 5932 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
4 | 3 | pm4.71i 559 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
5 | ancom 460 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
7 | 6 | exbii 1846 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | abbii 2812 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
9 | dfima3 6092 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
10 | dfrn3 5914 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
11 | 8, 9, 10 | 3eqtr4i 2778 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 〈cop 4654 dom cdm 5700 ran crn 5701 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: cnvimarndm 6112 foima 6839 fimadmfo 6843 f1imacnv 6878 fsn2 7170 resfunexg 7252 elunirnALT 7289 fnexALT 7991 uniqs2 8837 mapsnd 8944 phplem2 9271 php3 9275 phplem4OLD 9283 php3OLD 9287 pwfilem 9384 jech9.3 9883 fin4en1 10378 retopbas 24802 plyeq0 26270 bday0s 27891 rnelshi 32091 s2rnOLD 32910 s3rnOLD 32912 rndrhmcl 33265 qusrn 33402 rhmimaidl 33425 ply1degltdimlem 33635 poimirlem3 37583 poimirlem30 37610 |
Copyright terms: Public domain | W3C validator |