| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadmrn | Structured version Visualization version GIF version | ||
| Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3442 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opeldm 5854 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 4 | 3 | pm4.71i 559 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
| 5 | ancom 460 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 9 | dfima3 6018 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
| 10 | dfrn3 5836 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 11 | 8, 9, 10 | 3eqtr4i 2762 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 〈cop 4585 dom cdm 5623 ran crn 5624 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: cnvimarndm 6038 f1imadifssran 6572 foima 6745 fimadmfo 6749 f1imacnv 6784 fsn2 7074 resfunexg 7155 elunirnALT 7192 fnexALT 7893 uniqs2 8711 mapsnd 8820 phplem2 9129 php3 9133 pwfilem 9225 jech9.3 9729 fin4en1 10222 retopbas 24664 plyeq0 26132 bday0s 27760 rnelshi 32021 s2rnOLD 32898 s3rnOLD 32900 rndrhmcl 33245 qusrn 33356 rhmimaidl 33379 ply1degltdimlem 33594 poimirlem3 37602 poimirlem30 37629 cycl3grtri 47932 |
| Copyright terms: Public domain | W3C validator |