MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrn2g Structured version   Visualization version   GIF version

Theorem elrn2g 5901
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrn2g (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elrn2g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4874 . . . 4 (𝑦 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐴⟩)
21eleq1d 2826 . . 3 (𝑦 = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
32exbidv 1921 . 2 (𝑦 = 𝐴 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
4 dfrn3 5900 . 2 ran 𝐵 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐵}
53, 4elab2g 3680 1 (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2108  cop 4632  ran crn 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by:  elrng  5902  elrn2  5903  fvrnressn  7181  fo2ndf  8146
  Copyright terms: Public domain W3C validator