Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrn2g | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
elrn2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4818 | . . . 4 ⊢ (𝑦 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐴⟩) | |
2 | 1 | eleq1d 2821 | . . 3 ⊢ (𝑦 = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
3 | 2 | exbidv 1923 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
4 | dfrn3 5831 | . 2 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐵} | |
5 | 3, 4 | elab2g 3621 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ⟨cop 4579 ran crn 5621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-cnv 5628 df-dm 5630 df-rn 5631 |
This theorem is referenced by: elrng 5833 elrn2 5834 fvrnressn 7089 fo2ndf 8029 |
Copyright terms: Public domain | W3C validator |