MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smofvon2 Structured version   Visualization version   GIF version

Theorem smofvon2 8328
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2 (Smo 𝐹 → (𝐹𝐵) ∈ On)

Proof of Theorem smofvon2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 8319 . . . 4 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1145 . . 3 (Smo 𝐹𝐹:dom 𝐹⟶On)
3 ffvelcdm 7056 . . . 4 ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)
43expcom 413 . . 3 (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹𝐵) ∈ On))
52, 4syl5 34 . 2 (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
6 ndmfv 6896 . . . 4 𝐵 ∈ dom 𝐹 → (𝐹𝐵) = ∅)
7 0elon 6390 . . . 4 ∅ ∈ On
86, 7eqeltrdi 2837 . . 3 𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ On)
98a1d 25 . 2 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
105, 9pm2.61i 182 1 (Smo 𝐹 → (𝐹𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wral 3045  c0 4299  dom cdm 5641  Ord word 6334  Oncon0 6335  wf 6510  cfv 6514  Smo wsmo 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-smo 8318
This theorem is referenced by:  smo11  8336  smoord  8337  smoword  8338  smogt  8339
  Copyright terms: Public domain W3C validator