MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smofvon2 Structured version   Visualization version   GIF version

Theorem smofvon2 8396
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2 (Smo 𝐹 → (𝐹𝐵) ∈ On)

Proof of Theorem smofvon2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 8387 . . . 4 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1146 . . 3 (Smo 𝐹𝐹:dom 𝐹⟶On)
3 ffvelcdm 7101 . . . 4 ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)
43expcom 413 . . 3 (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹𝐵) ∈ On))
52, 4syl5 34 . 2 (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
6 ndmfv 6941 . . . 4 𝐵 ∈ dom 𝐹 → (𝐹𝐵) = ∅)
7 0elon 6438 . . . 4 ∅ ∈ On
86, 7eqeltrdi 2849 . . 3 𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ On)
98a1d 25 . 2 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
105, 9pm2.61i 182 1 (Smo 𝐹 → (𝐹𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wral 3061  c0 4333  dom cdm 5685  Ord word 6383  Oncon0 6384  wf 6557  cfv 6561  Smo wsmo 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-ord 6387  df-on 6388  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-smo 8386
This theorem is referenced by:  smo11  8404  smoord  8405  smoword  8406  smogt  8407
  Copyright terms: Public domain W3C validator