| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smofvon2 | Structured version Visualization version GIF version | ||
| Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| smofvon2 | ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 8361 | . . . 4 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
| 2 | 1 | simp1bi 1145 | . . 3 ⊢ (Smo 𝐹 → 𝐹:dom 𝐹⟶On) |
| 3 | ffvelcdm 7071 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) | |
| 4 | 3 | expcom 413 | . . 3 ⊢ (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹‘𝐵) ∈ On)) |
| 5 | 2, 4 | syl5 34 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
| 6 | ndmfv 6911 | . . . 4 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 7 | 0elon 6407 | . . . 4 ⊢ ∅ ∈ On | |
| 8 | 6, 7 | eqeltrdi 2842 | . . 3 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ On) |
| 9 | 8 | a1d 25 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
| 10 | 5, 9 | pm2.61i 182 | 1 ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3051 ∅c0 4308 dom cdm 5654 Ord word 6351 Oncon0 6352 ⟶wf 6527 ‘cfv 6531 Smo wsmo 8359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-ord 6355 df-on 6356 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-smo 8360 |
| This theorem is referenced by: smo11 8378 smoord 8379 smoword 8380 smogt 8381 |
| Copyright terms: Public domain | W3C validator |