![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smofvon2 | Structured version Visualization version GIF version |
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smofvon2 | β’ (Smo πΉ β (πΉβπ΅) β On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsmo2 8349 | . . . 4 β’ (Smo πΉ β (πΉ:dom πΉβΆOn β§ Ord dom πΉ β§ βπ₯ β dom πΉβπ¦ β π₯ (πΉβπ¦) β (πΉβπ₯))) | |
2 | 1 | simp1bi 1145 | . . 3 β’ (Smo πΉ β πΉ:dom πΉβΆOn) |
3 | ffvelcdm 7083 | . . . 4 β’ ((πΉ:dom πΉβΆOn β§ π΅ β dom πΉ) β (πΉβπ΅) β On) | |
4 | 3 | expcom 414 | . . 3 β’ (π΅ β dom πΉ β (πΉ:dom πΉβΆOn β (πΉβπ΅) β On)) |
5 | 2, 4 | syl5 34 | . 2 β’ (π΅ β dom πΉ β (Smo πΉ β (πΉβπ΅) β On)) |
6 | ndmfv 6926 | . . . 4 β’ (Β¬ π΅ β dom πΉ β (πΉβπ΅) = β ) | |
7 | 0elon 6418 | . . . 4 β’ β β On | |
8 | 6, 7 | eqeltrdi 2841 | . . 3 β’ (Β¬ π΅ β dom πΉ β (πΉβπ΅) β On) |
9 | 8 | a1d 25 | . 2 β’ (Β¬ π΅ β dom πΉ β (Smo πΉ β (πΉβπ΅) β On)) |
10 | 5, 9 | pm2.61i 182 | 1 β’ (Smo πΉ β (πΉβπ΅) β On) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wcel 2106 βwral 3061 β c0 4322 dom cdm 5676 Ord word 6363 Oncon0 6364 βΆwf 6539 βcfv 6543 Smo wsmo 8347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-smo 8348 |
This theorem is referenced by: smo11 8366 smoord 8367 smoword 8368 smogt 8369 |
Copyright terms: Public domain | W3C validator |