MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smofvon2 Structured version   Visualization version   GIF version

Theorem smofvon2 8302
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2 (Smo 𝐹 → (𝐹𝐵) ∈ On)

Proof of Theorem smofvon2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 8293 . . . 4 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1145 . . 3 (Smo 𝐹𝐹:dom 𝐹⟶On)
3 ffvelcdm 7035 . . . 4 ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)
43expcom 413 . . 3 (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹𝐵) ∈ On))
52, 4syl5 34 . 2 (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
6 ndmfv 6875 . . . 4 𝐵 ∈ dom 𝐹 → (𝐹𝐵) = ∅)
7 0elon 6375 . . . 4 ∅ ∈ On
86, 7eqeltrdi 2836 . . 3 𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ On)
98a1d 25 . 2 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
105, 9pm2.61i 182 1 (Smo 𝐹 → (𝐹𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wral 3044  c0 4292  dom cdm 5631  Ord word 6319  Oncon0 6320  wf 6495  cfv 6499  Smo wsmo 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-ord 6323  df-on 6324  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-smo 8292
This theorem is referenced by:  smo11  8310  smoord  8311  smoword  8312  smogt  8313
  Copyright terms: Public domain W3C validator