| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smofvon2 | Structured version Visualization version GIF version | ||
| Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| smofvon2 | ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 8267 | . . . 4 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
| 2 | 1 | simp1bi 1145 | . . 3 ⊢ (Smo 𝐹 → 𝐹:dom 𝐹⟶On) |
| 3 | ffvelcdm 7014 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) | |
| 4 | 3 | expcom 413 | . . 3 ⊢ (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹‘𝐵) ∈ On)) |
| 5 | 2, 4 | syl5 34 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
| 6 | ndmfv 6854 | . . . 4 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 7 | 0elon 6361 | . . . 4 ⊢ ∅ ∈ On | |
| 8 | 6, 7 | eqeltrdi 2839 | . . 3 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ On) |
| 9 | 8 | a1d 25 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
| 10 | 5, 9 | pm2.61i 182 | 1 ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∀wral 3047 ∅c0 4280 dom cdm 5614 Ord word 6305 Oncon0 6306 ⟶wf 6477 ‘cfv 6481 Smo wsmo 8265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-smo 8266 |
| This theorem is referenced by: smo11 8284 smoord 8285 smoword 8286 smogt 8287 |
| Copyright terms: Public domain | W3C validator |