Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smofvon2 | Structured version Visualization version GIF version |
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smofvon2 | ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsmo2 7995 | . . . 4 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
2 | 1 | simp1bi 1143 | . . 3 ⊢ (Smo 𝐹 → 𝐹:dom 𝐹⟶On) |
3 | ffvelrn 6841 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) | |
4 | 3 | expcom 418 | . . 3 ⊢ (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹‘𝐵) ∈ On)) |
5 | 2, 4 | syl5 34 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
6 | ndmfv 6689 | . . . 4 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
7 | 0elon 6223 | . . . 4 ⊢ ∅ ∈ On | |
8 | 6, 7 | eqeltrdi 2861 | . . 3 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ On) |
9 | 8 | a1d 25 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
10 | 5, 9 | pm2.61i 185 | 1 ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2112 ∀wral 3071 ∅c0 4226 dom cdm 5525 Ord word 6169 Oncon0 6170 ⟶wf 6332 ‘cfv 6336 Smo wsmo 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-tr 5140 df-id 5431 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-ord 6173 df-on 6174 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-smo 7994 |
This theorem is referenced by: smo11 8012 smoord 8013 smoword 8014 smogt 8015 |
Copyright terms: Public domain | W3C validator |