MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr1 Structured version   Visualization version   GIF version

Theorem ordtr1 6364
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 6334 . 2 (Ord 𝐶 → Tr 𝐶)
2 trel 5218 . 2 (Tr 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 17 1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Tr wtr 5209  Ord word 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-uni 4868  df-tr 5210  df-ord 6323
This theorem is referenced by:  ontr1  6367  dfsmo2  8293  smores2  8300  smoel  8306  smogt  8313  ordiso2  9444  r1ordg  9707  r1pwss  9713  r1val1  9715  rankr1ai  9727  rankval3b  9755  rankonidlem  9757  onssr1  9760  cofsmo  10198  fpwwe2lem8  10567  nosepssdm  27574  bnj1098  34746  bnj594  34875
  Copyright terms: Public domain W3C validator