| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr1 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6346 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
| 2 | trel 5223 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Tr wtr 5214 Ord word 6331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-ord 6335 |
| This theorem is referenced by: ontr1 6379 dfsmo2 8316 smores2 8323 smoel 8329 smogt 8336 ordiso2 9468 r1ordg 9731 r1pwss 9737 r1val1 9739 rankr1ai 9751 rankval3b 9779 rankonidlem 9781 onssr1 9784 cofsmo 10222 fpwwe2lem8 10591 nosepssdm 27598 bnj1098 34773 bnj594 34902 |
| Copyright terms: Public domain | W3C validator |