Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtr1 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6265 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
2 | trel 5194 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Tr wtr 5187 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-ord 6254 |
This theorem is referenced by: ontr1 6297 dfsmo2 8149 smores2 8156 smoel 8162 smogt 8169 ordiso2 9204 r1ordg 9467 r1pwss 9473 r1val1 9475 rankr1ai 9487 rankval3b 9515 rankonidlem 9517 onssr1 9520 cofsmo 9956 fpwwe2lem8 10325 bnj1098 32663 bnj594 32792 nosepssdm 33816 |
Copyright terms: Public domain | W3C validator |