MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr1 Structured version   Visualization version   GIF version

Theorem ordtr1 6406
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 6377 . 2 (Ord 𝐶 → Tr 𝐶)
2 trel 5273 . 2 (Tr 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 17 1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104  Tr wtr 5264  Ord word 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-in 3954  df-ss 3964  df-uni 4908  df-tr 5265  df-ord 6366
This theorem is referenced by:  ontr1  6409  dfsmo2  8349  smores2  8356  smoel  8362  smogt  8369  ordiso2  9512  r1ordg  9775  r1pwss  9781  r1val1  9783  rankr1ai  9795  rankval3b  9823  rankonidlem  9825  onssr1  9828  cofsmo  10266  fpwwe2lem8  10635  nosepssdm  27425  bnj1098  34092  bnj594  34221
  Copyright terms: Public domain W3C validator