| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr1 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6321 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
| 2 | trel 5207 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Tr wtr 5199 Ord word 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 df-tr 5200 df-ord 6310 |
| This theorem is referenced by: ontr1 6354 dfsmo2 8270 smores2 8277 smoel 8283 smogt 8290 ordiso2 9407 r1ordg 9674 r1pwss 9680 r1val1 9682 rankr1ai 9694 rankval3b 9722 rankonidlem 9724 onssr1 9727 cofsmo 10163 fpwwe2lem8 10532 nosepssdm 27596 bnj1098 34750 bnj594 34879 |
| Copyright terms: Public domain | W3C validator |