MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr1 Structured version   Visualization version   GIF version

Theorem ordtr1 6351
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 6321 . 2 (Ord 𝐶 → Tr 𝐶)
2 trel 5207 . 2 (Tr 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 17 1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Tr wtr 5199  Ord word 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-ss 3920  df-uni 4859  df-tr 5200  df-ord 6310
This theorem is referenced by:  ontr1  6354  dfsmo2  8270  smores2  8277  smoel  8283  smogt  8290  ordiso2  9407  r1ordg  9674  r1pwss  9680  r1val1  9682  rankr1ai  9694  rankval3b  9722  rankonidlem  9724  onssr1  9727  cofsmo  10163  fpwwe2lem8  10532  nosepssdm  27596  bnj1098  34750  bnj594  34879
  Copyright terms: Public domain W3C validator