![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtr1 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 5976 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
2 | trel 4981 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 Tr wtr 4974 Ord word 5961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-v 3415 df-in 3804 df-ss 3811 df-uni 4658 df-tr 4975 df-ord 5965 |
This theorem is referenced by: ontr1 6008 dfsmo2 7709 smores2 7716 smoel 7722 smogt 7729 ordiso2 8688 r1ordg 8917 r1pwss 8923 r1val1 8925 rankr1ai 8937 rankval3b 8965 rankonidlem 8967 onssr1 8970 cofsmo 9405 fpwwe2lem9 9774 bnj1098 31399 bnj594 31527 nosepssdm 32374 |
Copyright terms: Public domain | W3C validator |