![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issmo2 | Structured version Visualization version GIF version |
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
issmo2 | ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fss 6765 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:𝐴⟶On) | |
2 | 1 | ex 412 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On)) |
3 | fdm 6758 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | 3 | feq2d 6735 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On)) |
5 | 2, 4 | sylibrd 259 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On)) |
6 | ordeq 6404 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
8 | 7 | biimprd 248 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (Ord 𝐴 → Ord dom 𝐹)) |
9 | 3 | raleqdv 3334 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
10 | 9 | biimprd 248 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
11 | 5, 8, 10 | 3anim123d 1443 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) |
12 | dfsmo2 8405 | . 2 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
13 | 11, 12 | imbitrrdi 252 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 dom cdm 5700 Ord word 6396 Oncon0 6397 ⟶wf 6571 ‘cfv 6575 Smo wsmo 8403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6400 df-fn 6578 df-f 6579 df-smo 8404 |
This theorem is referenced by: alephsmo 10173 cofsmo 10340 cfsmolem 10341 |
Copyright terms: Public domain | W3C validator |