MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issmo2 Structured version   Visualization version   GIF version

Theorem issmo2 7975
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 6520 . . . . 5 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:𝐴⟶On)
21ex 413 . . . 4 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On))
3 fdm 6515 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43feq2d 6493 . . . 4 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On))
52, 4sylibrd 260 . . 3 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On))
6 ordeq 6191 . . . . 5 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
73, 6syl 17 . . . 4 (𝐹:𝐴𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴))
87biimprd 249 . . 3 (𝐹:𝐴𝐵 → (Ord 𝐴 → Ord dom 𝐹))
93raleqdv 3413 . . . 4 (𝐹:𝐴𝐵 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) ↔ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
109biimprd 249 . . 3 (𝐹:𝐴𝐵 → (∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
115, 8, 103anim123d 1434 . 2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
12 dfsmo2 7973 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1311, 12syl6ibr 253 1 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wss 3933  dom cdm 5548  Ord word 6183  Oncon0 6184  wf 6344  cfv 6348  Smo wsmo 7971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-v 3494  df-in 3940  df-ss 3949  df-uni 4831  df-tr 5164  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-fn 6351  df-f 6352  df-smo 7972
This theorem is referenced by:  alephsmo  9516  cofsmo  9679  cfsmolem  9680
  Copyright terms: Public domain W3C validator