Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issmo2 | Structured version Visualization version GIF version |
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
issmo2 | ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fss 6601 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:𝐴⟶On) | |
2 | 1 | ex 412 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On)) |
3 | fdm 6593 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | 3 | feq2d 6570 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On)) |
5 | 2, 4 | sylibrd 258 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On)) |
6 | ordeq 6258 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
8 | 7 | biimprd 247 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (Ord 𝐴 → Ord dom 𝐹)) |
9 | 3 | raleqdv 3339 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
10 | 9 | biimprd 247 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
11 | 5, 8, 10 | 3anim123d 1441 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) |
12 | dfsmo2 8149 | . 2 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
13 | 11, 12 | syl6ibr 251 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 dom cdm 5580 Ord word 6250 Oncon0 6251 ⟶wf 6414 ‘cfv 6418 Smo wsmo 8147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-fn 6421 df-f 6422 df-smo 8148 |
This theorem is referenced by: alephsmo 9789 cofsmo 9956 cfsmolem 9957 |
Copyright terms: Public domain | W3C validator |