MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issmo2 Structured version   Visualization version   GIF version

Theorem issmo2 8086
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 6562 . . . . 5 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:𝐴⟶On)
21ex 416 . . . 4 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On))
3 fdm 6554 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43feq2d 6531 . . . 4 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On))
52, 4sylibrd 262 . . 3 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On))
6 ordeq 6220 . . . . 5 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
73, 6syl 17 . . . 4 (𝐹:𝐴𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴))
87biimprd 251 . . 3 (𝐹:𝐴𝐵 → (Ord 𝐴 → Ord dom 𝐹))
93raleqdv 3325 . . . 4 (𝐹:𝐴𝐵 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) ↔ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
109biimprd 251 . . 3 (𝐹:𝐴𝐵 → (∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
115, 8, 103anim123d 1445 . 2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
12 dfsmo2 8084 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1311, 12syl6ibr 255 1 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wss 3866  dom cdm 5551  Ord word 6212  Oncon0 6213  wf 6376  cfv 6380  Smo wsmo 8082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-v 3410  df-in 3873  df-ss 3883  df-uni 4820  df-tr 5162  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-ord 6216  df-fn 6383  df-f 6384  df-smo 8083
This theorem is referenced by:  alephsmo  9716  cofsmo  9883  cfsmolem  9884
  Copyright terms: Public domain W3C validator