MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issmo2 Structured version   Visualization version   GIF version

Theorem issmo2 8370
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 6739 . . . . 5 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:𝐴⟶On)
21ex 411 . . . 4 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On))
3 fdm 6732 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43feq2d 6709 . . . 4 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On))
52, 4sylibrd 258 . . 3 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On))
6 ordeq 6378 . . . . 5 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
73, 6syl 17 . . . 4 (𝐹:𝐴𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴))
87biimprd 247 . . 3 (𝐹:𝐴𝐵 → (Ord 𝐴 → Ord dom 𝐹))
93raleqdv 3314 . . . 4 (𝐹:𝐴𝐵 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) ↔ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
109biimprd 247 . . 3 (𝐹:𝐴𝐵 → (∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
115, 8, 103anim123d 1439 . 2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
12 dfsmo2 8368 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1311, 12imbitrrdi 251 1 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wss 3944  dom cdm 5678  Ord word 6370  Oncon0 6371  wf 6545  cfv 6549  Smo wsmo 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-v 3463  df-ss 3961  df-uni 4910  df-tr 5267  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-fn 6552  df-f 6553  df-smo 8367
This theorem is referenced by:  alephsmo  10127  cofsmo  10294  cfsmolem  10295
  Copyright terms: Public domain W3C validator