MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdiffi Structured version   Visualization version   GIF version

Theorem infdiffi 9652
Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infdiffi ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdiffi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4116 . . . . . 6 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∖ ∅))
2 dif0 4372 . . . . . 6 (𝐴 ∖ ∅) = 𝐴
31, 2eqtrdi 2788 . . . . 5 (𝑥 = ∅ → (𝐴𝑥) = 𝐴)
43breq1d 5158 . . . 4 (𝑥 = ∅ → ((𝐴𝑥) ≈ 𝐴𝐴𝐴))
54imbi2d 340 . . 3 (𝑥 = ∅ → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴𝐴𝐴)))
6 difeq2 4116 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
76breq1d 5158 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝑦) ≈ 𝐴))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴)))
9 difeq2 4116 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ∖ (𝑦 ∪ {𝑧})))
10 difun1 4289 . . . . . 6 (𝐴 ∖ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∖ {𝑧})
119, 10eqtrdi 2788 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = ((𝐴𝑦) ∖ {𝑧}))
1211breq1d 5158 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴𝑥) ≈ 𝐴 ↔ ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
1312imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
14 difeq2 4116 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1514breq1d 5158 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
1615imbi2d 340 . . 3 (𝑥 = 𝐵 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴)))
17 reldom 8944 . . . . 5 Rel ≼
1817brrelex2i 5733 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
19 enrefg 8979 . . . 4 (𝐴 ∈ V → 𝐴𝐴)
2018, 19syl 17 . . 3 (ω ≼ 𝐴𝐴𝐴)
21 domen2 9119 . . . . . . . . 9 ((𝐴𝑦) ≈ 𝐴 → (ω ≼ (𝐴𝑦) ↔ ω ≼ 𝐴))
2221biimparc 480 . . . . . . . 8 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ω ≼ (𝐴𝑦))
23 infdifsn 9651 . . . . . . . 8 (ω ≼ (𝐴𝑦) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
2422, 23syl 17 . . . . . . 7 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
25 entr 9001 . . . . . . 7 ((((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦) ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2624, 25sylancom 588 . . . . . 6 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2726ex 413 . . . . 5 (ω ≼ 𝐴 → ((𝐴𝑦) ≈ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2827a2i 14 . . . 4 ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2928a1i 11 . . 3 (𝑦 ∈ Fin → ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
305, 8, 13, 16, 20, 29findcard2 9163 . 2 (𝐵 ∈ Fin → (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴))
3130impcom 408 1 ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3945  cun 3946  c0 4322  {csn 4628   class class class wbr 5148  ωcom 7854  cen 8935  cdom 8936  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7855  df-er 8702  df-en 8939  df-dom 8940  df-fin 8942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator