MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdiffi Structured version   Visualization version   GIF version

Theorem infdiffi 9120
Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infdiffi ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdiffi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4092 . . . . . 6 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∖ ∅))
2 dif0 4331 . . . . . 6 (𝐴 ∖ ∅) = 𝐴
31, 2syl6eq 2872 . . . . 5 (𝑥 = ∅ → (𝐴𝑥) = 𝐴)
43breq1d 5075 . . . 4 (𝑥 = ∅ → ((𝐴𝑥) ≈ 𝐴𝐴𝐴))
54imbi2d 343 . . 3 (𝑥 = ∅ → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴𝐴𝐴)))
6 difeq2 4092 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
76breq1d 5075 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝑦) ≈ 𝐴))
87imbi2d 343 . . 3 (𝑥 = 𝑦 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴)))
9 difeq2 4092 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ∖ (𝑦 ∪ {𝑧})))
10 difun1 4263 . . . . . 6 (𝐴 ∖ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∖ {𝑧})
119, 10syl6eq 2872 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = ((𝐴𝑦) ∖ {𝑧}))
1211breq1d 5075 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴𝑥) ≈ 𝐴 ↔ ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
1312imbi2d 343 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
14 difeq2 4092 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1514breq1d 5075 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
1615imbi2d 343 . . 3 (𝑥 = 𝐵 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴)))
17 reldom 8514 . . . . 5 Rel ≼
1817brrelex2i 5608 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
19 enrefg 8540 . . . 4 (𝐴 ∈ V → 𝐴𝐴)
2018, 19syl 17 . . 3 (ω ≼ 𝐴𝐴𝐴)
21 domen2 8659 . . . . . . . . 9 ((𝐴𝑦) ≈ 𝐴 → (ω ≼ (𝐴𝑦) ↔ ω ≼ 𝐴))
2221biimparc 482 . . . . . . . 8 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ω ≼ (𝐴𝑦))
23 infdifsn 9119 . . . . . . . 8 (ω ≼ (𝐴𝑦) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
2422, 23syl 17 . . . . . . 7 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
25 entr 8560 . . . . . . 7 ((((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦) ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2624, 25sylancom 590 . . . . . 6 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2726ex 415 . . . . 5 (ω ≼ 𝐴 → ((𝐴𝑦) ≈ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2827a2i 14 . . . 4 ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2928a1i 11 . . 3 (𝑦 ∈ Fin → ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
305, 8, 13, 16, 20, 29findcard2 8757 . 2 (𝐵 ∈ Fin → (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴))
3130impcom 410 1 ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  cdif 3932  cun 3933  c0 4290  {csn 4566   class class class wbr 5065  ωcom 7579  cen 8505  cdom 8506  Fincfn 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7580  df-1o 8101  df-er 8288  df-en 8509  df-dom 8510  df-fin 8512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator