MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdiffi Structured version   Visualization version   GIF version

Theorem infdiffi 9123
Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infdiffi ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdiffi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4095 . . . . . 6 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∖ ∅))
2 dif0 4334 . . . . . 6 (𝐴 ∖ ∅) = 𝐴
31, 2syl6eq 2874 . . . . 5 (𝑥 = ∅ → (𝐴𝑥) = 𝐴)
43breq1d 5078 . . . 4 (𝑥 = ∅ → ((𝐴𝑥) ≈ 𝐴𝐴𝐴))
54imbi2d 343 . . 3 (𝑥 = ∅ → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴𝐴𝐴)))
6 difeq2 4095 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
76breq1d 5078 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝑦) ≈ 𝐴))
87imbi2d 343 . . 3 (𝑥 = 𝑦 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴)))
9 difeq2 4095 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ∖ (𝑦 ∪ {𝑧})))
10 difun1 4266 . . . . . 6 (𝐴 ∖ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∖ {𝑧})
119, 10syl6eq 2874 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = ((𝐴𝑦) ∖ {𝑧}))
1211breq1d 5078 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴𝑥) ≈ 𝐴 ↔ ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
1312imbi2d 343 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
14 difeq2 4095 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1514breq1d 5078 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
1615imbi2d 343 . . 3 (𝑥 = 𝐵 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴)))
17 reldom 8517 . . . . 5 Rel ≼
1817brrelex2i 5611 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
19 enrefg 8543 . . . 4 (𝐴 ∈ V → 𝐴𝐴)
2018, 19syl 17 . . 3 (ω ≼ 𝐴𝐴𝐴)
21 domen2 8662 . . . . . . . . 9 ((𝐴𝑦) ≈ 𝐴 → (ω ≼ (𝐴𝑦) ↔ ω ≼ 𝐴))
2221biimparc 482 . . . . . . . 8 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ω ≼ (𝐴𝑦))
23 infdifsn 9122 . . . . . . . 8 (ω ≼ (𝐴𝑦) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
2422, 23syl 17 . . . . . . 7 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
25 entr 8563 . . . . . . 7 ((((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦) ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2624, 25sylancom 590 . . . . . 6 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2726ex 415 . . . . 5 (ω ≼ 𝐴 → ((𝐴𝑦) ≈ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2827a2i 14 . . . 4 ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2928a1i 11 . . 3 (𝑦 ∈ Fin → ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
305, 8, 13, 16, 20, 29findcard2 8760 . 2 (𝐵 ∈ Fin → (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴))
3130impcom 410 1 ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  cun 3936  c0 4293  {csn 4569   class class class wbr 5068  ωcom 7582  cen 8508  cdom 8509  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-fin 8515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator