MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdiffi Structured version   Visualization version   GIF version

Theorem infdiffi 9602
Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infdiffi ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdiffi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4080 . . . . . 6 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∖ ∅))
2 dif0 4336 . . . . . 6 (𝐴 ∖ ∅) = 𝐴
31, 2eqtrdi 2789 . . . . 5 (𝑥 = ∅ → (𝐴𝑥) = 𝐴)
43breq1d 5119 . . . 4 (𝑥 = ∅ → ((𝐴𝑥) ≈ 𝐴𝐴𝐴))
54imbi2d 341 . . 3 (𝑥 = ∅ → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴𝐴𝐴)))
6 difeq2 4080 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
76breq1d 5119 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝑦) ≈ 𝐴))
87imbi2d 341 . . 3 (𝑥 = 𝑦 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴)))
9 difeq2 4080 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ∖ (𝑦 ∪ {𝑧})))
10 difun1 4253 . . . . . 6 (𝐴 ∖ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∖ {𝑧})
119, 10eqtrdi 2789 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = ((𝐴𝑦) ∖ {𝑧}))
1211breq1d 5119 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴𝑥) ≈ 𝐴 ↔ ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
1312imbi2d 341 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
14 difeq2 4080 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1514breq1d 5119 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ 𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
1615imbi2d 341 . . 3 (𝑥 = 𝐵 → ((ω ≼ 𝐴 → (𝐴𝑥) ≈ 𝐴) ↔ (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴)))
17 reldom 8895 . . . . 5 Rel ≼
1817brrelex2i 5693 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
19 enrefg 8930 . . . 4 (𝐴 ∈ V → 𝐴𝐴)
2018, 19syl 17 . . 3 (ω ≼ 𝐴𝐴𝐴)
21 domen2 9070 . . . . . . . . 9 ((𝐴𝑦) ≈ 𝐴 → (ω ≼ (𝐴𝑦) ↔ ω ≼ 𝐴))
2221biimparc 481 . . . . . . . 8 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ω ≼ (𝐴𝑦))
23 infdifsn 9601 . . . . . . . 8 (ω ≼ (𝐴𝑦) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
2422, 23syl 17 . . . . . . 7 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦))
25 entr 8952 . . . . . . 7 ((((𝐴𝑦) ∖ {𝑧}) ≈ (𝐴𝑦) ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2624, 25sylancom 589 . . . . . 6 ((ω ≼ 𝐴 ∧ (𝐴𝑦) ≈ 𝐴) → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)
2726ex 414 . . . . 5 (ω ≼ 𝐴 → ((𝐴𝑦) ≈ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2827a2i 14 . . . 4 ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴))
2928a1i 11 . . 3 (𝑦 ∈ Fin → ((ω ≼ 𝐴 → (𝐴𝑦) ≈ 𝐴) → (ω ≼ 𝐴 → ((𝐴𝑦) ∖ {𝑧}) ≈ 𝐴)))
305, 8, 13, 16, 20, 29findcard2 9114 . 2 (𝐵 ∈ Fin → (ω ≼ 𝐴 → (𝐴𝐵) ≈ 𝐴))
3130impcom 409 1 ((ω ≼ 𝐴𝐵 ∈ Fin) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3447  cdif 3911  cun 3912  c0 4286  {csn 4590   class class class wbr 5109  ωcom 7806  cen 8886  cdom 8887  Fincfn 8889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-er 8654  df-en 8890  df-dom 8891  df-fin 8893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator