MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl2 Structured version   Visualization version   GIF version

Theorem nulmbl2 25571
Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol*(𝐴) = 0 while "outer measure zero" means that for any 𝑥 there is a 𝑦 containing 𝐴 with volume less than 𝑥. Assuming AC, these notions are equivalent (because the intersection of all such 𝑦 is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
nulmbl2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem nulmbl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1rp 13038 . . . . 5 1 ∈ ℝ+
21ne0ii 4344 . . . 4 + ≠ ∅
3 r19.2z 4495 . . . 4 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
42, 3mpan 690 . . 3 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
5 simprl 771 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴𝑦)
6 mblss 25566 . . . . . . 7 (𝑦 ∈ dom vol → 𝑦 ⊆ ℝ)
76adantr 480 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝑦 ⊆ ℝ)
85, 7sstrd 3994 . . . . 5 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
98rexlimiva 3147 . . . 4 (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
109rexlimivw 3151 . . 3 (∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
114, 10syl 17 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
12 inss1 4237 . . . . . . . . . . . 12 (𝑧𝐴) ⊆ 𝑧
13 elpwi 4607 . . . . . . . . . . . . 13 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → 𝑧 ⊆ ℝ)
15 simpr 484 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) ∈ ℝ)
16 ovolsscl 25521 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
1712, 14, 15, 16mp3an2i 1468 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
18 difssd 4137 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (𝑧𝐴) ⊆ 𝑧)
19 ovolsscl 25521 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2018, 14, 15, 19syl3anc 1373 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2117, 20readdcld 11290 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2221ad2antrr 726 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2315ad2antrr 726 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) ∈ ℝ)
24 difssd 4137 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ 𝑦)
257adantl 481 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ⊆ ℝ)
26 rpre 13043 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 727 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑥 ∈ ℝ)
28 simprrr 782 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ≤ 𝑥)
29 ovollecl 25518 . . . . . . . . . . . 12 ((𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧ (vol*‘𝑦) ≤ 𝑥) → (vol*‘𝑦) ∈ ℝ)
3025, 27, 28, 29syl3anc 1373 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ∈ ℝ)
31 ovolsscl 25521 . . . . . . . . . . 11 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3224, 25, 30, 31syl3anc 1373 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3323, 32readdcld 11290 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ∈ ℝ)
3423, 27readdcld 11290 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + 𝑥) ∈ ℝ)
3517ad2antrr 726 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
3620ad2antrr 726 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
37 inss1 4237 . . . . . . . . . . . 12 (𝑧𝑦) ⊆ 𝑧
3814ad2antrr 726 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑧 ⊆ ℝ)
39 ovolsscl 25521 . . . . . . . . . . . 12 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4037, 38, 23, 39mp3an2i 1468 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
41 difssd 4137 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ 𝑧)
42 ovolsscl 25521 . . . . . . . . . . . . 13 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4341, 38, 23, 42syl3anc 1373 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4443, 32readdcld 11290 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ)
45 simprrl 781 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝐴𝑦)
46 sslin 4243 . . . . . . . . . . . . 13 (𝐴𝑦 → (𝑧𝐴) ⊆ (𝑧𝑦))
4745, 46syl 17 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ (𝑧𝑦))
4837, 38sstrid 3995 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
49 ovolss 25520 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ (𝑧𝑦) ∧ (𝑧𝑦) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5047, 48, 49syl2anc 584 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5138ssdifssd 4147 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
5225ssdifssd 4147 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ ℝ)
5351, 52unssd 4192 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ)
54 ovolun 25534 . . . . . . . . . . . . . 14 ((((𝑧𝑦) ⊆ ℝ ∧ (vol*‘(𝑧𝑦)) ∈ ℝ) ∧ ((𝑦𝐴) ⊆ ℝ ∧ (vol*‘(𝑦𝐴)) ∈ ℝ)) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
5551, 43, 52, 32, 54syl22anc 839 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
56 ovollecl 25518 . . . . . . . . . . . . 13 ((((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ ∧ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ ∧ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
5753, 44, 55, 56syl3anc 1373 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
58 ssun1 4178 . . . . . . . . . . . . . . . . 17 𝑧 ⊆ (𝑧𝑦)
59 undif1 4476 . . . . . . . . . . . . . . . . 17 ((𝑧𝑦) ∪ 𝑦) = (𝑧𝑦)
6058, 59sseqtrri 4033 . . . . . . . . . . . . . . . 16 𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦)
61 ssdif 4144 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦) → (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴))
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15 (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴)
63 difundir 4291 . . . . . . . . . . . . . . 15 (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴) = (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
6462, 63sseqtri 4032 . . . . . . . . . . . . . 14 (𝑧𝐴) ⊆ (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
65 difun1 4299 . . . . . . . . . . . . . . . 16 (𝑧 ∖ (𝑦𝐴)) = ((𝑧𝑦) ∖ 𝐴)
66 ssequn2 4189 . . . . . . . . . . . . . . . . . 18 (𝐴𝑦 ↔ (𝑦𝐴) = 𝑦)
6745, 66sylib 218 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) = 𝑦)
6867difeq2d 4126 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ (𝑦𝐴)) = (𝑧𝑦))
6965, 68eqtr3id 2791 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∖ 𝐴) = (𝑧𝑦))
7069uneq1d 4167 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴)) = ((𝑧𝑦) ∪ (𝑦𝐴)))
7164, 70sseqtrid 4026 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)))
72 ovolss 25520 . . . . . . . . . . . . 13 (((𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)) ∧ ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7371, 53, 72syl2anc 584 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7436, 57, 44, 73, 55letrd 11418 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
7535, 36, 40, 44, 50, 74le2addd 11882 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
76 simprl 771 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ∈ dom vol)
77 mblsplit 25567 . . . . . . . . . . . . 13 ((𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7876, 38, 23, 77syl3anc 1373 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7978oveq1d 7446 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))))
8040recnd 11289 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8143recnd 11289 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8232recnd 11289 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℂ)
8380, 81, 82addassd 11283 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8479, 83eqtrd 2777 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8575, 84breqtrrd 5171 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + (vol*‘(𝑦𝐴))))
86 difss 4136 . . . . . . . . . . . 12 (𝑦𝐴) ⊆ 𝑦
87 ovolss 25520 . . . . . . . . . . . 12 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8886, 25, 87sylancr 587 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8932, 30, 27, 88, 28letrd 11418 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ 𝑥)
9032, 27, 23, 89leadd2dd 11878 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9122, 33, 34, 85, 90letrd 11418 . . . . . . . 8 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9291rexlimdvaa 3156 . . . . . . 7 (((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9392ralimdva 3167 . . . . . 6 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9493impcom 407 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9521adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
9695rexrd 11311 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ*)
97 simprr 773 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
98 xralrple 13247 . . . . . 6 ((((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ* ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9996, 97, 98syl2anc 584 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
10094, 99mpbird 257 . . . 4 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))
101100expr 456 . . 3 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ 𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
102101ralrimiva 3146 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
103 ismbl2 25562 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))))
10411, 102, 103sylanbrc 583 1 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   class class class wbr 5143  dom cdm 5685  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158  *cxr 11294  cle 11296  +crp 13034  vol*covol 25497  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-ovol 25499  df-vol 25500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator