Step | Hyp | Ref
| Expression |
1 | | 1rp 12663 |
. . . . 5
⊢ 1 ∈
ℝ+ |
2 | 1 | ne0ii 4268 |
. . . 4
⊢
ℝ+ ≠ ∅ |
3 | | r19.2z 4422 |
. . . 4
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → ∃𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) |
4 | 2, 3 | mpan 686 |
. . 3
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∃𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) |
5 | | simprl 767 |
. . . . . 6
⊢ ((𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ 𝑦) |
6 | | mblss 24600 |
. . . . . . 7
⊢ (𝑦 ∈ dom vol → 𝑦 ⊆
ℝ) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝑦 ⊆ ℝ) |
8 | 5, 7 | sstrd 3927 |
. . . . 5
⊢ ((𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ ℝ) |
9 | 8 | rexlimiva 3209 |
. . . 4
⊢
(∃𝑦 ∈ dom
vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ) |
10 | 9 | rexlimivw 3210 |
. . 3
⊢
(∃𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ) |
11 | 4, 10 | syl 17 |
. 2
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ) |
12 | | inss1 4159 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝐴) ⊆ 𝑧 |
13 | | elpwi 4539 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝒫 ℝ →
𝑧 ⊆
ℝ) |
14 | 13 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → 𝑧 ⊆
ℝ) |
15 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘𝑧) ∈ ℝ) |
16 | | ovolsscl 24555 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∩ 𝐴) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∩ 𝐴)) ∈
ℝ) |
17 | 12, 14, 15, 16 | mp3an2i 1464 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘(𝑧 ∩ 𝐴)) ∈ ℝ) |
18 | | difssd 4063 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (𝑧 ∖
𝐴) ⊆ 𝑧) |
19 | | ovolsscl 24555 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∖ 𝐴) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∖
𝐴)) ∈
ℝ) |
20 | 18, 14, 15, 19 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘(𝑧 ∖ 𝐴)) ∈ ℝ) |
21 | 17, 20 | readdcld 10935 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈ ℝ) |
22 | 21 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈ ℝ) |
23 | 15 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) ∈ ℝ) |
24 | | difssd 4063 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦 ∖ 𝐴) ⊆ 𝑦) |
25 | 7 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ⊆ ℝ) |
26 | | rpre 12667 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
27 | 26 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑥 ∈ ℝ) |
28 | | simprrr 778 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ≤ 𝑥) |
29 | | ovollecl 24552 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧
(vol*‘𝑦) ≤ 𝑥) → (vol*‘𝑦) ∈
ℝ) |
30 | 25, 27, 28, 29 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ∈ ℝ) |
31 | | ovolsscl 24555 |
. . . . . . . . . . 11
⊢ (((𝑦 ∖ 𝐴) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ) →
(vol*‘(𝑦 ∖
𝐴)) ∈
ℝ) |
32 | 24, 25, 30, 31 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ∈ ℝ) |
33 | 23, 32 | readdcld 10935 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) ∈ ℝ) |
34 | 23, 27 | readdcld 10935 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + 𝑥) ∈ ℝ) |
35 | 17 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝐴)) ∈ ℝ) |
36 | 20 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝐴)) ∈ ℝ) |
37 | | inss1 4159 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝑦) ⊆ 𝑧 |
38 | 14 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑧 ⊆ ℝ) |
39 | | ovolsscl 24555 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∩ 𝑦) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∩ 𝑦)) ∈
ℝ) |
40 | 37, 38, 23, 39 | mp3an2i 1464 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝑦)) ∈ ℝ) |
41 | | difssd 4063 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ 𝑦) ⊆ 𝑧) |
42 | | ovolsscl 24555 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∖ 𝑦) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∖
𝑦)) ∈
ℝ) |
43 | 41, 38, 23, 42 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝑦)) ∈ ℝ) |
44 | 43, 32 | readdcld 10935 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))) ∈ ℝ) |
45 | | simprrl 777 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝐴 ⊆ 𝑦) |
46 | | sslin 4165 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑦 → (𝑧 ∩ 𝐴) ⊆ (𝑧 ∩ 𝑦)) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∩ 𝐴) ⊆ (𝑧 ∩ 𝑦)) |
48 | 37, 38 | sstrid 3928 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∩ 𝑦) ⊆ ℝ) |
49 | | ovolss 24554 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∩ 𝐴) ⊆ (𝑧 ∩ 𝑦) ∧ (𝑧 ∩ 𝑦) ⊆ ℝ) → (vol*‘(𝑧 ∩ 𝐴)) ≤ (vol*‘(𝑧 ∩ 𝑦))) |
50 | 47, 48, 49 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝐴)) ≤ (vol*‘(𝑧 ∩ 𝑦))) |
51 | 38 | ssdifssd 4073 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ 𝑦) ⊆ ℝ) |
52 | 25 | ssdifssd 4073 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦 ∖ 𝐴) ⊆ ℝ) |
53 | 51, 52 | unssd 4116 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ⊆ ℝ) |
54 | | ovolun 24568 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∖ 𝑦) ⊆ ℝ ∧ (vol*‘(𝑧 ∖ 𝑦)) ∈ ℝ) ∧ ((𝑦 ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(𝑦 ∖ 𝐴)) ∈ ℝ)) →
(vol*‘((𝑧 ∖
𝑦) ∪ (𝑦 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) |
55 | 51, 43, 52, 32, 54 | syl22anc 835 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) |
56 | | ovollecl 24552 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ⊆ ℝ ∧ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))) ∈ ℝ ∧ (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) → (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ∈ ℝ) |
57 | 53, 44, 55, 56 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ∈ ℝ) |
58 | | ssun1 4102 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ⊆ (𝑧 ∪ 𝑦) |
59 | | undif1 4406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∖ 𝑦) ∪ 𝑦) = (𝑧 ∪ 𝑦) |
60 | 58, 59 | sseqtrri 3954 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ⊆ ((𝑧 ∖ 𝑦) ∪ 𝑦) |
61 | | ssdif 4070 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ ((𝑧 ∖ 𝑦) ∪ 𝑦) → (𝑧 ∖ 𝐴) ⊆ (((𝑧 ∖ 𝑦) ∪ 𝑦) ∖ 𝐴)) |
62 | 60, 61 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∖ 𝐴) ⊆ (((𝑧 ∖ 𝑦) ∪ 𝑦) ∖ 𝐴) |
63 | | difundir 4211 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∖ 𝑦) ∪ 𝑦) ∖ 𝐴) = (((𝑧 ∖ 𝑦) ∖ 𝐴) ∪ (𝑦 ∖ 𝐴)) |
64 | 62, 63 | sseqtri 3953 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∖ 𝐴) ⊆ (((𝑧 ∖ 𝑦) ∖ 𝐴) ∪ (𝑦 ∖ 𝐴)) |
65 | | difun1 4220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∖ (𝑦 ∪ 𝐴)) = ((𝑧 ∖ 𝑦) ∖ 𝐴) |
66 | | ssequn2 4113 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ⊆ 𝑦 ↔ (𝑦 ∪ 𝐴) = 𝑦) |
67 | 45, 66 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦 ∪ 𝐴) = 𝑦) |
68 | 67 | difeq2d 4053 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ (𝑦 ∪ 𝐴)) = (𝑧 ∖ 𝑦)) |
69 | 65, 68 | eqtr3id 2793 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧 ∖ 𝑦) ∖ 𝐴) = (𝑧 ∖ 𝑦)) |
70 | 69 | uneq1d 4092 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((𝑧 ∖ 𝑦) ∖ 𝐴) ∪ (𝑦 ∖ 𝐴)) = ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) |
71 | 64, 70 | sseqtrid 3969 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ 𝐴) ⊆ ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) |
72 | | ovolss 24554 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∖ 𝐴) ⊆ ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ∧ ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ⊆ ℝ) →
(vol*‘(𝑧 ∖
𝐴)) ≤
(vol*‘((𝑧 ∖
𝑦) ∪ (𝑦 ∖ 𝐴)))) |
73 | 71, 53, 72 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝐴)) ≤ (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)))) |
74 | 36, 57, 44, 73, 55 | letrd 11062 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝐴)) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) |
75 | 35, 36, 40, 44, 50, 74 | le2addd 11524 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∩ 𝑦)) + ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))))) |
76 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ∈ dom vol) |
77 | | mblsplit 24601 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘𝑧) = ((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦)))) |
78 | 76, 38, 23, 77 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) = ((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦)))) |
79 | 78 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) = (((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦))) + (vol*‘(𝑦 ∖ 𝐴)))) |
80 | 40 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝑦)) ∈ ℂ) |
81 | 43 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝑦)) ∈ ℂ) |
82 | 32 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ∈ ℂ) |
83 | 80, 81, 82 | addassd 10928 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦))) + (vol*‘(𝑦 ∖ 𝐴))) = ((vol*‘(𝑧 ∩ 𝑦)) + ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))))) |
84 | 79, 83 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) = ((vol*‘(𝑧 ∩ 𝑦)) + ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))))) |
85 | 75, 84 | breqtrrd 5098 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴)))) |
86 | | difss 4062 |
. . . . . . . . . . . 12
⊢ (𝑦 ∖ 𝐴) ⊆ 𝑦 |
87 | | ovolss 24554 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∖ 𝐴) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ) → (vol*‘(𝑦 ∖ 𝐴)) ≤ (vol*‘𝑦)) |
88 | 86, 25, 87 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ≤ (vol*‘𝑦)) |
89 | 32, 30, 27, 88, 28 | letrd 11062 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ≤ 𝑥) |
90 | 32, 27, 23, 89 | leadd2dd 11520 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥)) |
91 | 22, 33, 34, 85, 90 | letrd 11062 |
. . . . . . . 8
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥)) |
92 | 91 | rexlimdvaa 3213 |
. . . . . . 7
⊢ (((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) → (∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) |
93 | 92 | ralimdva 3102 |
. . . . . 6
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (∀𝑥
∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑥 ∈ ℝ+
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) |
94 | 93 | impcom 407 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ∀𝑥
∈ ℝ+ ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥)) |
95 | 21 | adantl 481 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈ ℝ) |
96 | 95 | rexrd 10956 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈
ℝ*) |
97 | | simprr 769 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (vol*‘𝑧) ∈ ℝ) |
98 | | xralrple 12868 |
. . . . . 6
⊢
((((vol*‘(𝑧
∩ 𝐴)) +
(vol*‘(𝑧 ∖
𝐴))) ∈
ℝ* ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) |
99 | 96, 97, 98 | syl2anc 583 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) |
100 | 94, 99 | mpbird 256 |
. . . 4
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧)) |
101 | 100 | expr 456 |
. . 3
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ 𝑧 ∈ 𝒫 ℝ) →
((vol*‘𝑧) ∈
ℝ → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧))) |
102 | 101 | ralrimiva 3107 |
. 2
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ →
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧))) |
103 | | ismbl2 24596 |
. 2
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧
∀𝑧 ∈ 𝒫
ℝ((vol*‘𝑧)
∈ ℝ → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧)))) |
104 | 11, 102, 103 | sylanbrc 582 |
1
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol) |