MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl2 Structured version   Visualization version   GIF version

Theorem nulmbl2 24064
Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol*(𝐴) = 0 while "outer measure zero" means that for any 𝑥 there is a 𝑦 containing 𝐴 with volume less than 𝑥. Assuming AC, these notions are equivalent (because the intersection of all such 𝑦 is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
nulmbl2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem nulmbl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1rp 12381 . . . . 5 1 ∈ ℝ+
21ne0ii 4300 . . . 4 + ≠ ∅
3 r19.2z 4436 . . . 4 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
42, 3mpan 686 . . 3 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
5 simprl 767 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴𝑦)
6 mblss 24059 . . . . . . 7 (𝑦 ∈ dom vol → 𝑦 ⊆ ℝ)
76adantr 481 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝑦 ⊆ ℝ)
85, 7sstrd 3974 . . . . 5 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
98rexlimiva 3278 . . . 4 (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
109rexlimivw 3279 . . 3 (∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
114, 10syl 17 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
12 inss1 4202 . . . . . . . . . . . 12 (𝑧𝐴) ⊆ 𝑧
13 elpwi 4547 . . . . . . . . . . . . 13 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413adantr 481 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → 𝑧 ⊆ ℝ)
15 simpr 485 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) ∈ ℝ)
16 ovolsscl 24014 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
1712, 14, 15, 16mp3an2i 1457 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
18 difssd 4106 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (𝑧𝐴) ⊆ 𝑧)
19 ovolsscl 24014 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2018, 14, 15, 19syl3anc 1363 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2117, 20readdcld 10658 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2221ad2antrr 722 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2315ad2antrr 722 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) ∈ ℝ)
24 difssd 4106 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ 𝑦)
257adantl 482 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ⊆ ℝ)
26 rpre 12385 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 723 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑥 ∈ ℝ)
28 simprrr 778 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ≤ 𝑥)
29 ovollecl 24011 . . . . . . . . . . . 12 ((𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧ (vol*‘𝑦) ≤ 𝑥) → (vol*‘𝑦) ∈ ℝ)
3025, 27, 28, 29syl3anc 1363 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ∈ ℝ)
31 ovolsscl 24014 . . . . . . . . . . 11 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3224, 25, 30, 31syl3anc 1363 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3323, 32readdcld 10658 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ∈ ℝ)
3423, 27readdcld 10658 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + 𝑥) ∈ ℝ)
3517ad2antrr 722 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
3620ad2antrr 722 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
37 inss1 4202 . . . . . . . . . . . 12 (𝑧𝑦) ⊆ 𝑧
3814ad2antrr 722 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑧 ⊆ ℝ)
39 ovolsscl 24014 . . . . . . . . . . . 12 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4037, 38, 23, 39mp3an2i 1457 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
41 difssd 4106 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ 𝑧)
42 ovolsscl 24014 . . . . . . . . . . . . 13 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4341, 38, 23, 42syl3anc 1363 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4443, 32readdcld 10658 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ)
45 simprrl 777 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝐴𝑦)
46 sslin 4208 . . . . . . . . . . . . 13 (𝐴𝑦 → (𝑧𝐴) ⊆ (𝑧𝑦))
4745, 46syl 17 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ (𝑧𝑦))
4837, 38sstrid 3975 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
49 ovolss 24013 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ (𝑧𝑦) ∧ (𝑧𝑦) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5047, 48, 49syl2anc 584 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5138ssdifssd 4116 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
5225ssdifssd 4116 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ ℝ)
5351, 52unssd 4159 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ)
54 ovolun 24027 . . . . . . . . . . . . . 14 ((((𝑧𝑦) ⊆ ℝ ∧ (vol*‘(𝑧𝑦)) ∈ ℝ) ∧ ((𝑦𝐴) ⊆ ℝ ∧ (vol*‘(𝑦𝐴)) ∈ ℝ)) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
5551, 43, 52, 32, 54syl22anc 834 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
56 ovollecl 24011 . . . . . . . . . . . . 13 ((((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ ∧ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ ∧ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
5753, 44, 55, 56syl3anc 1363 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
58 ssun1 4145 . . . . . . . . . . . . . . . . 17 𝑧 ⊆ (𝑧𝑦)
59 undif1 4420 . . . . . . . . . . . . . . . . 17 ((𝑧𝑦) ∪ 𝑦) = (𝑧𝑦)
6058, 59sseqtrri 4001 . . . . . . . . . . . . . . . 16 𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦)
61 ssdif 4113 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦) → (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴))
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15 (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴)
63 difundir 4254 . . . . . . . . . . . . . . 15 (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴) = (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
6462, 63sseqtri 4000 . . . . . . . . . . . . . 14 (𝑧𝐴) ⊆ (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
65 difun1 4261 . . . . . . . . . . . . . . . 16 (𝑧 ∖ (𝑦𝐴)) = ((𝑧𝑦) ∖ 𝐴)
66 ssequn2 4156 . . . . . . . . . . . . . . . . . 18 (𝐴𝑦 ↔ (𝑦𝐴) = 𝑦)
6745, 66sylib 219 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) = 𝑦)
6867difeq2d 4096 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ (𝑦𝐴)) = (𝑧𝑦))
6965, 68syl5eqr 2867 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∖ 𝐴) = (𝑧𝑦))
7069uneq1d 4135 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴)) = ((𝑧𝑦) ∪ (𝑦𝐴)))
7164, 70sseqtrid 4016 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)))
72 ovolss 24013 . . . . . . . . . . . . 13 (((𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)) ∧ ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7371, 53, 72syl2anc 584 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7436, 57, 44, 73, 55letrd 10785 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
7535, 36, 40, 44, 50, 74le2addd 11247 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
76 simprl 767 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ∈ dom vol)
77 mblsplit 24060 . . . . . . . . . . . . 13 ((𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7876, 38, 23, 77syl3anc 1363 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7978oveq1d 7160 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))))
8040recnd 10657 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8143recnd 10657 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8232recnd 10657 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℂ)
8380, 81, 82addassd 10651 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8479, 83eqtrd 2853 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8575, 84breqtrrd 5085 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + (vol*‘(𝑦𝐴))))
86 difss 4105 . . . . . . . . . . . 12 (𝑦𝐴) ⊆ 𝑦
87 ovolss 24013 . . . . . . . . . . . 12 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8886, 25, 87sylancr 587 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8932, 30, 27, 88, 28letrd 10785 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ 𝑥)
9032, 27, 23, 89leadd2dd 11243 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9122, 33, 34, 85, 90letrd 10785 . . . . . . . 8 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9291rexlimdvaa 3282 . . . . . . 7 (((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9392ralimdva 3174 . . . . . 6 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9493impcom 408 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9521adantl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
9695rexrd 10679 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ*)
97 simprr 769 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
98 xralrple 12586 . . . . . 6 ((((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ* ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9996, 97, 98syl2anc 584 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
10094, 99mpbird 258 . . . 4 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))
101100expr 457 . . 3 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ 𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
102101ralrimiva 3179 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
103 ismbl2 24055 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))))
10411, 102, 103sylanbrc 583 1 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535   class class class wbr 5057  dom cdm 5548  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528  *cxr 10662  cle 10664  +crp 12377  vol*covol 23990  volcvol 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-ovol 23992  df-vol 23993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator