MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl2 Structured version   Visualization version   GIF version

Theorem nulmbl2 25465
Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol*(𝐴) = 0 while "outer measure zero" means that for any 𝑥 there is a 𝑦 containing 𝐴 with volume less than 𝑥. Assuming AC, these notions are equivalent (because the intersection of all such 𝑦 is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
nulmbl2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem nulmbl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1rp 12894 . . . . 5 1 ∈ ℝ+
21ne0ii 4294 . . . 4 + ≠ ∅
3 r19.2z 4445 . . . 4 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
42, 3mpan 690 . . 3 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
5 simprl 770 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴𝑦)
6 mblss 25460 . . . . . . 7 (𝑦 ∈ dom vol → 𝑦 ⊆ ℝ)
76adantr 480 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝑦 ⊆ ℝ)
85, 7sstrd 3945 . . . . 5 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
98rexlimiva 3125 . . . 4 (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
109rexlimivw 3129 . . 3 (∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
114, 10syl 17 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
12 inss1 4187 . . . . . . . . . . . 12 (𝑧𝐴) ⊆ 𝑧
13 elpwi 4557 . . . . . . . . . . . . 13 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → 𝑧 ⊆ ℝ)
15 simpr 484 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) ∈ ℝ)
16 ovolsscl 25415 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
1712, 14, 15, 16mp3an2i 1468 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
18 difssd 4087 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (𝑧𝐴) ⊆ 𝑧)
19 ovolsscl 25415 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2018, 14, 15, 19syl3anc 1373 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2117, 20readdcld 11141 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2221ad2antrr 726 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2315ad2antrr 726 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) ∈ ℝ)
24 difssd 4087 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ 𝑦)
257adantl 481 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ⊆ ℝ)
26 rpre 12899 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 727 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑥 ∈ ℝ)
28 simprrr 781 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ≤ 𝑥)
29 ovollecl 25412 . . . . . . . . . . . 12 ((𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧ (vol*‘𝑦) ≤ 𝑥) → (vol*‘𝑦) ∈ ℝ)
3025, 27, 28, 29syl3anc 1373 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ∈ ℝ)
31 ovolsscl 25415 . . . . . . . . . . 11 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3224, 25, 30, 31syl3anc 1373 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3323, 32readdcld 11141 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ∈ ℝ)
3423, 27readdcld 11141 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + 𝑥) ∈ ℝ)
3517ad2antrr 726 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
3620ad2antrr 726 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
37 inss1 4187 . . . . . . . . . . . 12 (𝑧𝑦) ⊆ 𝑧
3814ad2antrr 726 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑧 ⊆ ℝ)
39 ovolsscl 25415 . . . . . . . . . . . 12 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4037, 38, 23, 39mp3an2i 1468 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
41 difssd 4087 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ 𝑧)
42 ovolsscl 25415 . . . . . . . . . . . . 13 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4341, 38, 23, 42syl3anc 1373 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4443, 32readdcld 11141 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ)
45 simprrl 780 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝐴𝑦)
46 sslin 4193 . . . . . . . . . . . . 13 (𝐴𝑦 → (𝑧𝐴) ⊆ (𝑧𝑦))
4745, 46syl 17 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ (𝑧𝑦))
4837, 38sstrid 3946 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
49 ovolss 25414 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ (𝑧𝑦) ∧ (𝑧𝑦) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5047, 48, 49syl2anc 584 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5138ssdifssd 4097 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
5225ssdifssd 4097 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ ℝ)
5351, 52unssd 4142 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ)
54 ovolun 25428 . . . . . . . . . . . . . 14 ((((𝑧𝑦) ⊆ ℝ ∧ (vol*‘(𝑧𝑦)) ∈ ℝ) ∧ ((𝑦𝐴) ⊆ ℝ ∧ (vol*‘(𝑦𝐴)) ∈ ℝ)) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
5551, 43, 52, 32, 54syl22anc 838 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
56 ovollecl 25412 . . . . . . . . . . . . 13 ((((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ ∧ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ ∧ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
5753, 44, 55, 56syl3anc 1373 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
58 ssun1 4128 . . . . . . . . . . . . . . . . 17 𝑧 ⊆ (𝑧𝑦)
59 undif1 4426 . . . . . . . . . . . . . . . . 17 ((𝑧𝑦) ∪ 𝑦) = (𝑧𝑦)
6058, 59sseqtrri 3984 . . . . . . . . . . . . . . . 16 𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦)
61 ssdif 4094 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦) → (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴))
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15 (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴)
63 difundir 4241 . . . . . . . . . . . . . . 15 (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴) = (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
6462, 63sseqtri 3983 . . . . . . . . . . . . . 14 (𝑧𝐴) ⊆ (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
65 difun1 4249 . . . . . . . . . . . . . . . 16 (𝑧 ∖ (𝑦𝐴)) = ((𝑧𝑦) ∖ 𝐴)
66 ssequn2 4139 . . . . . . . . . . . . . . . . . 18 (𝐴𝑦 ↔ (𝑦𝐴) = 𝑦)
6745, 66sylib 218 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) = 𝑦)
6867difeq2d 4076 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ (𝑦𝐴)) = (𝑧𝑦))
6965, 68eqtr3id 2780 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∖ 𝐴) = (𝑧𝑦))
7069uneq1d 4117 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴)) = ((𝑧𝑦) ∪ (𝑦𝐴)))
7164, 70sseqtrid 3977 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)))
72 ovolss 25414 . . . . . . . . . . . . 13 (((𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)) ∧ ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7371, 53, 72syl2anc 584 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7436, 57, 44, 73, 55letrd 11270 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
7535, 36, 40, 44, 50, 74le2addd 11736 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
76 simprl 770 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ∈ dom vol)
77 mblsplit 25461 . . . . . . . . . . . . 13 ((𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7876, 38, 23, 77syl3anc 1373 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7978oveq1d 7361 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))))
8040recnd 11140 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8143recnd 11140 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8232recnd 11140 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℂ)
8380, 81, 82addassd 11134 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8479, 83eqtrd 2766 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8575, 84breqtrrd 5119 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + (vol*‘(𝑦𝐴))))
86 difss 4086 . . . . . . . . . . . 12 (𝑦𝐴) ⊆ 𝑦
87 ovolss 25414 . . . . . . . . . . . 12 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8886, 25, 87sylancr 587 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8932, 30, 27, 88, 28letrd 11270 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ 𝑥)
9032, 27, 23, 89leadd2dd 11732 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9122, 33, 34, 85, 90letrd 11270 . . . . . . . 8 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9291rexlimdvaa 3134 . . . . . . 7 (((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9392ralimdva 3144 . . . . . 6 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9493impcom 407 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9521adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
9695rexrd 11162 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ*)
97 simprr 772 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
98 xralrple 13104 . . . . . 6 ((((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ* ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9996, 97, 98syl2anc 584 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
10094, 99mpbird 257 . . . 4 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))
101100expr 456 . . 3 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ 𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
102101ralrimiva 3124 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
103 ismbl2 25456 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))))
10411, 102, 103sylanbrc 583 1 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550   class class class wbr 5091  dom cdm 5616  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009  *cxr 11145  cle 11147  +crp 12890  vol*covol 25391  volcvol 25392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-ovol 25393  df-vol 25394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator