MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl2 Structured version   Visualization version   GIF version

Theorem nulmbl2 25285
Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol*(𝐴) = 0 while "outer measure zero" means that for any 𝑥 there is a 𝑦 containing 𝐴 with volume less than 𝑥. Assuming AC, these notions are equivalent (because the intersection of all such 𝑦 is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
nulmbl2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem nulmbl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1rp 12982 . . . . 5 1 ∈ ℝ+
21ne0ii 4336 . . . 4 + ≠ ∅
3 r19.2z 4493 . . . 4 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
42, 3mpan 686 . . 3 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))
5 simprl 767 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴𝑦)
6 mblss 25280 . . . . . . 7 (𝑦 ∈ dom vol → 𝑦 ⊆ ℝ)
76adantr 479 . . . . . 6 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝑦 ⊆ ℝ)
85, 7sstrd 3991 . . . . 5 ((𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
98rexlimiva 3145 . . . 4 (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
109rexlimivw 3149 . . 3 (∃𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
114, 10syl 17 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ)
12 inss1 4227 . . . . . . . . . . . 12 (𝑧𝐴) ⊆ 𝑧
13 elpwi 4608 . . . . . . . . . . . . 13 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413adantr 479 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → 𝑧 ⊆ ℝ)
15 simpr 483 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) ∈ ℝ)
16 ovolsscl 25235 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
1712, 14, 15, 16mp3an2i 1464 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
18 difssd 4131 . . . . . . . . . . . 12 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (𝑧𝐴) ⊆ 𝑧)
19 ovolsscl 25235 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2018, 14, 15, 19syl3anc 1369 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝐴)) ∈ ℝ)
2117, 20readdcld 11247 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2221ad2antrr 722 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
2315ad2antrr 722 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) ∈ ℝ)
24 difssd 4131 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ 𝑦)
257adantl 480 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ⊆ ℝ)
26 rpre 12986 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 723 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑥 ∈ ℝ)
28 simprrr 778 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ≤ 𝑥)
29 ovollecl 25232 . . . . . . . . . . . 12 ((𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧ (vol*‘𝑦) ≤ 𝑥) → (vol*‘𝑦) ∈ ℝ)
3025, 27, 28, 29syl3anc 1369 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ∈ ℝ)
31 ovolsscl 25235 . . . . . . . . . . 11 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3224, 25, 30, 31syl3anc 1369 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℝ)
3323, 32readdcld 11247 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ∈ ℝ)
3423, 27readdcld 11247 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + 𝑥) ∈ ℝ)
3517ad2antrr 722 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
3620ad2antrr 722 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ∈ ℝ)
37 inss1 4227 . . . . . . . . . . . 12 (𝑧𝑦) ⊆ 𝑧
3814ad2antrr 722 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑧 ⊆ ℝ)
39 ovolsscl 25235 . . . . . . . . . . . 12 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4037, 38, 23, 39mp3an2i 1464 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
41 difssd 4131 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ 𝑧)
42 ovolsscl 25235 . . . . . . . . . . . . 13 (((𝑧𝑦) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4341, 38, 23, 42syl3anc 1369 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℝ)
4443, 32readdcld 11247 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ)
45 simprrl 777 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝐴𝑦)
46 sslin 4233 . . . . . . . . . . . . 13 (𝐴𝑦 → (𝑧𝐴) ⊆ (𝑧𝑦))
4745, 46syl 17 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ (𝑧𝑦))
4837, 38sstrid 3992 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
49 ovolss 25234 . . . . . . . . . . . 12 (((𝑧𝐴) ⊆ (𝑧𝑦) ∧ (𝑧𝑦) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5047, 48, 49syl2anc 582 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘(𝑧𝑦)))
5138ssdifssd 4141 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝑦) ⊆ ℝ)
5225ssdifssd 4141 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) ⊆ ℝ)
5351, 52unssd 4185 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ)
54 ovolun 25248 . . . . . . . . . . . . . 14 ((((𝑧𝑦) ⊆ ℝ ∧ (vol*‘(𝑧𝑦)) ∈ ℝ) ∧ ((𝑦𝐴) ⊆ ℝ ∧ (vol*‘(𝑦𝐴)) ∈ ℝ)) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
5551, 43, 52, 32, 54syl22anc 835 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
56 ovollecl 25232 . . . . . . . . . . . . 13 ((((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ ∧ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))) ∈ ℝ ∧ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
5753, 44, 55, 56syl3anc 1369 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))) ∈ ℝ)
58 ssun1 4171 . . . . . . . . . . . . . . . . 17 𝑧 ⊆ (𝑧𝑦)
59 undif1 4474 . . . . . . . . . . . . . . . . 17 ((𝑧𝑦) ∪ 𝑦) = (𝑧𝑦)
6058, 59sseqtrri 4018 . . . . . . . . . . . . . . . 16 𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦)
61 ssdif 4138 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ ((𝑧𝑦) ∪ 𝑦) → (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴))
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15 (𝑧𝐴) ⊆ (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴)
63 difundir 4279 . . . . . . . . . . . . . . 15 (((𝑧𝑦) ∪ 𝑦) ∖ 𝐴) = (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
6462, 63sseqtri 4017 . . . . . . . . . . . . . 14 (𝑧𝐴) ⊆ (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴))
65 difun1 4288 . . . . . . . . . . . . . . . 16 (𝑧 ∖ (𝑦𝐴)) = ((𝑧𝑦) ∖ 𝐴)
66 ssequn2 4182 . . . . . . . . . . . . . . . . . 18 (𝐴𝑦 ↔ (𝑦𝐴) = 𝑦)
6745, 66sylib 217 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦𝐴) = 𝑦)
6867difeq2d 4121 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ (𝑦𝐴)) = (𝑧𝑦))
6965, 68eqtr3id 2784 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧𝑦) ∖ 𝐴) = (𝑧𝑦))
7069uneq1d 4161 . . . . . . . . . . . . . 14 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((𝑧𝑦) ∖ 𝐴) ∪ (𝑦𝐴)) = ((𝑧𝑦) ∪ (𝑦𝐴)))
7164, 70sseqtrid 4033 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)))
72 ovolss 25234 . . . . . . . . . . . . 13 (((𝑧𝐴) ⊆ ((𝑧𝑦) ∪ (𝑦𝐴)) ∧ ((𝑧𝑦) ∪ (𝑦𝐴)) ⊆ ℝ) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7371, 53, 72syl2anc 582 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ (vol*‘((𝑧𝑦) ∪ (𝑦𝐴))))
7436, 57, 44, 73, 55letrd 11375 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝐴)) ≤ ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴))))
7535, 36, 40, 44, 50, 74le2addd 11837 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
76 simprl 767 . . . . . . . . . . . . 13 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ∈ dom vol)
77 mblsplit 25281 . . . . . . . . . . . . 13 ((𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7876, 38, 23, 77syl3anc 1369 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) = ((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))))
7978oveq1d 7426 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))))
8040recnd 11246 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8143recnd 11246 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧𝑦)) ∈ ℂ)
8232recnd 11246 . . . . . . . . . . . 12 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ∈ ℂ)
8380, 81, 82addassd 11240 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((vol*‘(𝑧𝑦)) + (vol*‘(𝑧𝑦))) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8479, 83eqtrd 2770 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) = ((vol*‘(𝑧𝑦)) + ((vol*‘(𝑧𝑦)) + (vol*‘(𝑦𝐴)))))
8575, 84breqtrrd 5175 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + (vol*‘(𝑦𝐴))))
86 difss 4130 . . . . . . . . . . . 12 (𝑦𝐴) ⊆ 𝑦
87 ovolss 25234 . . . . . . . . . . . 12 (((𝑦𝐴) ⊆ 𝑦𝑦 ⊆ ℝ) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8886, 25, 87sylancr 585 . . . . . . . . . . 11 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ (vol*‘𝑦))
8932, 30, 27, 88, 28letrd 11375 . . . . . . . . . 10 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦𝐴)) ≤ 𝑥)
9032, 27, 23, 89leadd2dd 11833 . . . . . . . . 9 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9122, 33, 34, 85, 90letrd 11375 . . . . . . . 8 ((((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9291rexlimdvaa 3154 . . . . . . 7 (((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9392ralimdva 3165 . . . . . 6 ((𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9493impcom 406 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥))
9521adantl 480 . . . . . . 7 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ)
9695rexrd 11268 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ*)
97 simprr 769 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
98 xralrple 13188 . . . . . 6 ((((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ∈ ℝ* ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
9996, 97, 98syl2anc 582 . . . . 5 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+ ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ ((vol*‘𝑧) + 𝑥)))
10094, 99mpbird 256 . . . 4 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))
101100expr 455 . . 3 ((∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ 𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
102101ralrimiva 3144 . 2 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧)))
103 ismbl2 25276 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧𝐴)) + (vol*‘(𝑧𝐴))) ≤ (vol*‘𝑧))))
10411, 102, 103sylanbrc 581 1 (∀𝑥 ∈ ℝ+𝑦 ∈ dom vol(𝐴𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321  𝒫 cpw 4601   class class class wbr 5147  dom cdm 5675  cfv 6542  (class class class)co 7411  cr 11111  1c1 11113   + caddc 11115  *cxr 11251  cle 11253  +crp 12978  vol*covol 25211  volcvol 25212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-ioo 13332  df-ico 13334  df-icc 13335  df-fz 13489  df-fl 13761  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-ovol 25213  df-vol 25214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator