| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 1rp 13038 | . . . . 5
⊢ 1 ∈
ℝ+ | 
| 2 | 1 | ne0ii 4344 | . . . 4
⊢
ℝ+ ≠ ∅ | 
| 3 |  | r19.2z 4495 | . . . 4
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → ∃𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) | 
| 4 | 2, 3 | mpan 690 | . . 3
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∃𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) | 
| 5 |  | simprl 771 | . . . . . 6
⊢ ((𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ 𝑦) | 
| 6 |  | mblss 25566 | . . . . . . 7
⊢ (𝑦 ∈ dom vol → 𝑦 ⊆
ℝ) | 
| 7 | 6 | adantr 480 | . . . . . 6
⊢ ((𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝑦 ⊆ ℝ) | 
| 8 | 5, 7 | sstrd 3994 | . . . . 5
⊢ ((𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥)) → 𝐴 ⊆ ℝ) | 
| 9 | 8 | rexlimiva 3147 | . . . 4
⊢
(∃𝑦 ∈ dom
vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ) | 
| 10 | 9 | rexlimivw 3151 | . . 3
⊢
(∃𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ) | 
| 11 | 4, 10 | syl 17 | . 2
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ⊆ ℝ) | 
| 12 |  | inss1 4237 | . . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝐴) ⊆ 𝑧 | 
| 13 |  | elpwi 4607 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝒫 ℝ →
𝑧 ⊆
ℝ) | 
| 14 | 13 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → 𝑧 ⊆
ℝ) | 
| 15 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘𝑧) ∈ ℝ) | 
| 16 |  | ovolsscl 25521 | . . . . . . . . . . . 12
⊢ (((𝑧 ∩ 𝐴) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∩ 𝐴)) ∈
ℝ) | 
| 17 | 12, 14, 15, 16 | mp3an2i 1468 | . . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘(𝑧 ∩ 𝐴)) ∈ ℝ) | 
| 18 |  | difssd 4137 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (𝑧 ∖
𝐴) ⊆ 𝑧) | 
| 19 |  | ovolsscl 25521 | . . . . . . . . . . . 12
⊢ (((𝑧 ∖ 𝐴) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∖
𝐴)) ∈
ℝ) | 
| 20 | 18, 14, 15, 19 | syl3anc 1373 | . . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘(𝑧 ∖ 𝐴)) ∈ ℝ) | 
| 21 | 17, 20 | readdcld 11290 | . . . . . . . . . 10
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈ ℝ) | 
| 22 | 21 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈ ℝ) | 
| 23 | 15 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) ∈ ℝ) | 
| 24 |  | difssd 4137 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦 ∖ 𝐴) ⊆ 𝑦) | 
| 25 | 7 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ⊆ ℝ) | 
| 26 |  | rpre 13043 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) | 
| 27 | 26 | ad2antlr 727 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑥 ∈ ℝ) | 
| 28 |  | simprrr 782 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ≤ 𝑥) | 
| 29 |  | ovollecl 25518 | . . . . . . . . . . . 12
⊢ ((𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧
(vol*‘𝑦) ≤ 𝑥) → (vol*‘𝑦) ∈
ℝ) | 
| 30 | 25, 27, 28, 29 | syl3anc 1373 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑦) ∈ ℝ) | 
| 31 |  | ovolsscl 25521 | . . . . . . . . . . 11
⊢ (((𝑦 ∖ 𝐴) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ) →
(vol*‘(𝑦 ∖
𝐴)) ∈
ℝ) | 
| 32 | 24, 25, 30, 31 | syl3anc 1373 | . . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ∈ ℝ) | 
| 33 | 23, 32 | readdcld 11290 | . . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) ∈ ℝ) | 
| 34 | 23, 27 | readdcld 11290 | . . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + 𝑥) ∈ ℝ) | 
| 35 | 17 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝐴)) ∈ ℝ) | 
| 36 | 20 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝐴)) ∈ ℝ) | 
| 37 |  | inss1 4237 | . . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝑦) ⊆ 𝑧 | 
| 38 | 14 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑧 ⊆ ℝ) | 
| 39 |  | ovolsscl 25521 | . . . . . . . . . . . 12
⊢ (((𝑧 ∩ 𝑦) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∩ 𝑦)) ∈
ℝ) | 
| 40 | 37, 38, 23, 39 | mp3an2i 1468 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝑦)) ∈ ℝ) | 
| 41 |  | difssd 4137 | . . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ 𝑦) ⊆ 𝑧) | 
| 42 |  | ovolsscl 25521 | . . . . . . . . . . . . 13
⊢ (((𝑧 ∖ 𝑦) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∖
𝑦)) ∈
ℝ) | 
| 43 | 41, 38, 23, 42 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝑦)) ∈ ℝ) | 
| 44 | 43, 32 | readdcld 11290 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))) ∈ ℝ) | 
| 45 |  | simprrl 781 | . . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝐴 ⊆ 𝑦) | 
| 46 |  | sslin 4243 | . . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑦 → (𝑧 ∩ 𝐴) ⊆ (𝑧 ∩ 𝑦)) | 
| 47 | 45, 46 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∩ 𝐴) ⊆ (𝑧 ∩ 𝑦)) | 
| 48 | 37, 38 | sstrid 3995 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∩ 𝑦) ⊆ ℝ) | 
| 49 |  | ovolss 25520 | . . . . . . . . . . . 12
⊢ (((𝑧 ∩ 𝐴) ⊆ (𝑧 ∩ 𝑦) ∧ (𝑧 ∩ 𝑦) ⊆ ℝ) → (vol*‘(𝑧 ∩ 𝐴)) ≤ (vol*‘(𝑧 ∩ 𝑦))) | 
| 50 | 47, 48, 49 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝐴)) ≤ (vol*‘(𝑧 ∩ 𝑦))) | 
| 51 | 38 | ssdifssd 4147 | . . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ 𝑦) ⊆ ℝ) | 
| 52 | 25 | ssdifssd 4147 | . . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦 ∖ 𝐴) ⊆ ℝ) | 
| 53 | 51, 52 | unssd 4192 | . . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ⊆ ℝ) | 
| 54 |  | ovolun 25534 | . . . . . . . . . . . . . 14
⊢ ((((𝑧 ∖ 𝑦) ⊆ ℝ ∧ (vol*‘(𝑧 ∖ 𝑦)) ∈ ℝ) ∧ ((𝑦 ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(𝑦 ∖ 𝐴)) ∈ ℝ)) →
(vol*‘((𝑧 ∖
𝑦) ∪ (𝑦 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) | 
| 55 | 51, 43, 52, 32, 54 | syl22anc 839 | . . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) | 
| 56 |  | ovollecl 25518 | . . . . . . . . . . . . 13
⊢ ((((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ⊆ ℝ ∧ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))) ∈ ℝ ∧ (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) → (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ∈ ℝ) | 
| 57 | 53, 44, 55, 56 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) ∈ ℝ) | 
| 58 |  | ssun1 4178 | . . . . . . . . . . . . . . . . 17
⊢ 𝑧 ⊆ (𝑧 ∪ 𝑦) | 
| 59 |  | undif1 4476 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∖ 𝑦) ∪ 𝑦) = (𝑧 ∪ 𝑦) | 
| 60 | 58, 59 | sseqtrri 4033 | . . . . . . . . . . . . . . . 16
⊢ 𝑧 ⊆ ((𝑧 ∖ 𝑦) ∪ 𝑦) | 
| 61 |  | ssdif 4144 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ ((𝑧 ∖ 𝑦) ∪ 𝑦) → (𝑧 ∖ 𝐴) ⊆ (((𝑧 ∖ 𝑦) ∪ 𝑦) ∖ 𝐴)) | 
| 62 | 60, 61 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ∖ 𝐴) ⊆ (((𝑧 ∖ 𝑦) ∪ 𝑦) ∖ 𝐴) | 
| 63 |  | difundir 4291 | . . . . . . . . . . . . . . 15
⊢ (((𝑧 ∖ 𝑦) ∪ 𝑦) ∖ 𝐴) = (((𝑧 ∖ 𝑦) ∖ 𝐴) ∪ (𝑦 ∖ 𝐴)) | 
| 64 | 62, 63 | sseqtri 4032 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∖ 𝐴) ⊆ (((𝑧 ∖ 𝑦) ∖ 𝐴) ∪ (𝑦 ∖ 𝐴)) | 
| 65 |  | difun1 4299 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 ∖ (𝑦 ∪ 𝐴)) = ((𝑧 ∖ 𝑦) ∖ 𝐴) | 
| 66 |  | ssequn2 4189 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ⊆ 𝑦 ↔ (𝑦 ∪ 𝐴) = 𝑦) | 
| 67 | 45, 66 | sylib 218 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑦 ∪ 𝐴) = 𝑦) | 
| 68 | 67 | difeq2d 4126 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ (𝑦 ∪ 𝐴)) = (𝑧 ∖ 𝑦)) | 
| 69 | 65, 68 | eqtr3id 2791 | . . . . . . . . . . . . . . 15
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((𝑧 ∖ 𝑦) ∖ 𝐴) = (𝑧 ∖ 𝑦)) | 
| 70 | 69 | uneq1d 4167 | . . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((𝑧 ∖ 𝑦) ∖ 𝐴) ∪ (𝑦 ∖ 𝐴)) = ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) | 
| 71 | 64, 70 | sseqtrid 4026 | . . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (𝑧 ∖ 𝐴) ⊆ ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴))) | 
| 72 |  | ovolss 25520 | . . . . . . . . . . . . 13
⊢ (((𝑧 ∖ 𝐴) ⊆ ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ∧ ((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)) ⊆ ℝ) →
(vol*‘(𝑧 ∖
𝐴)) ≤
(vol*‘((𝑧 ∖
𝑦) ∪ (𝑦 ∖ 𝐴)))) | 
| 73 | 71, 53, 72 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝐴)) ≤ (vol*‘((𝑧 ∖ 𝑦) ∪ (𝑦 ∖ 𝐴)))) | 
| 74 | 36, 57, 44, 73, 55 | letrd 11418 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝐴)) ≤ ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴)))) | 
| 75 | 35, 36, 40, 44, 50, 74 | le2addd 11882 | . . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘(𝑧 ∩ 𝑦)) + ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))))) | 
| 76 |  | simprl 771 | . . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → 𝑦 ∈ dom vol) | 
| 77 |  | mblsplit 25567 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (vol*‘𝑧) = ((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦)))) | 
| 78 | 76, 38, 23, 77 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘𝑧) = ((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦)))) | 
| 79 | 78 | oveq1d 7446 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) = (((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦))) + (vol*‘(𝑦 ∖ 𝐴)))) | 
| 80 | 40 | recnd 11289 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∩ 𝑦)) ∈ ℂ) | 
| 81 | 43 | recnd 11289 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑧 ∖ 𝑦)) ∈ ℂ) | 
| 82 | 32 | recnd 11289 | . . . . . . . . . . . 12
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ∈ ℂ) | 
| 83 | 80, 81, 82 | addassd 11283 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (((vol*‘(𝑧 ∩ 𝑦)) + (vol*‘(𝑧 ∖ 𝑦))) + (vol*‘(𝑦 ∖ 𝐴))) = ((vol*‘(𝑧 ∩ 𝑦)) + ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))))) | 
| 84 | 79, 83 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) = ((vol*‘(𝑧 ∩ 𝑦)) + ((vol*‘(𝑧 ∖ 𝑦)) + (vol*‘(𝑦 ∖ 𝐴))))) | 
| 85 | 75, 84 | breqtrrd 5171 | . . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴)))) | 
| 86 |  | difss 4136 | . . . . . . . . . . . 12
⊢ (𝑦 ∖ 𝐴) ⊆ 𝑦 | 
| 87 |  | ovolss 25520 | . . . . . . . . . . . 12
⊢ (((𝑦 ∖ 𝐴) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ) → (vol*‘(𝑦 ∖ 𝐴)) ≤ (vol*‘𝑦)) | 
| 88 | 86, 25, 87 | sylancr 587 | . . . . . . . . . . 11
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ≤ (vol*‘𝑦)) | 
| 89 | 32, 30, 27, 88, 28 | letrd 11418 | . . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → (vol*‘(𝑦 ∖ 𝐴)) ≤ 𝑥) | 
| 90 | 32, 27, 23, 89 | leadd2dd 11878 | . . . . . . . . 9
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘𝑧) + (vol*‘(𝑦 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥)) | 
| 91 | 22, 33, 34, 85, 90 | letrd 11418 | . . . . . . . 8
⊢ ((((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) ∧ (𝑦 ∈ dom vol ∧ (𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥))) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥)) | 
| 92 | 91 | rexlimdvaa 3156 | . . . . . . 7
⊢ (((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) ∧ 𝑥 ∈
ℝ+) → (∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) | 
| 93 | 92 | ralimdva 3167 | . . . . . 6
⊢ ((𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ) → (∀𝑥
∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑥 ∈ ℝ+
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) | 
| 94 | 93 | impcom 407 | . . . . 5
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ∀𝑥
∈ ℝ+ ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥)) | 
| 95 | 21 | adantl 481 | . . . . . . 7
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈ ℝ) | 
| 96 | 95 | rexrd 11311 | . . . . . 6
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ∈
ℝ*) | 
| 97 |  | simprr 773 | . . . . . 6
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (vol*‘𝑧) ∈ ℝ) | 
| 98 |  | xralrple 13247 | . . . . . 6
⊢
((((vol*‘(𝑧
∩ 𝐴)) +
(vol*‘(𝑧 ∖
𝐴))) ∈
ℝ* ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) | 
| 99 | 96, 97, 98 | syl2anc 584 | . . . . 5
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧) ↔ ∀𝑥 ∈ ℝ+
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ ((vol*‘𝑧) + 𝑥))) | 
| 100 | 94, 99 | mpbird 257 | . . . 4
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧)) | 
| 101 | 100 | expr 456 | . . 3
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) ∧ 𝑧 ∈ 𝒫 ℝ) →
((vol*‘𝑧) ∈
ℝ → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧))) | 
| 102 | 101 | ralrimiva 3146 | . 2
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ →
((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧))) | 
| 103 |  | ismbl2 25562 | . 2
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧
∀𝑧 ∈ 𝒫
ℝ((vol*‘𝑧)
∈ ℝ → ((vol*‘(𝑧 ∩ 𝐴)) + (vol*‘(𝑧 ∖ 𝐴))) ≤ (vol*‘𝑧)))) | 
| 104 | 11, 102, 103 | sylanbrc 583 | 1
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol) |