MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difxp1 Structured version   Visualization version   GIF version

Theorem difxp1 6185
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
difxp1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶))

Proof of Theorem difxp1
StepHypRef Expression
1 difxp 6184 . 2 ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) = (((𝐴𝐵) × 𝐶) ∪ (𝐴 × (𝐶𝐶)))
2 difid 4376 . . . . 5 (𝐶𝐶) = ∅
32xpeq2i 5712 . . . 4 (𝐴 × (𝐶𝐶)) = (𝐴 × ∅)
4 xp0 6178 . . . 4 (𝐴 × ∅) = ∅
53, 4eqtri 2765 . . 3 (𝐴 × (𝐶𝐶)) = ∅
65uneq2i 4165 . 2 (((𝐴𝐵) × 𝐶) ∪ (𝐴 × (𝐶𝐶))) = (((𝐴𝐵) × 𝐶) ∪ ∅)
7 un0 4394 . 2 (((𝐴𝐵) × 𝐶) ∪ ∅) = ((𝐴𝐵) × 𝐶)
81, 6, 73eqtrri 2770 1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3948  cun 3949  c0 4333   × cxp 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693
This theorem is referenced by:  resdifdi  6256  difxp1ss  32541  sxbrsigalem2  34288
  Copyright terms: Public domain W3C validator