![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difxp1 | Structured version Visualization version GIF version |
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
difxp1 | ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difxp 6162 | . 2 ⊢ ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) = (((𝐴 ∖ 𝐵) × 𝐶) ∪ (𝐴 × (𝐶 ∖ 𝐶))) | |
2 | difid 4366 | . . . . 5 ⊢ (𝐶 ∖ 𝐶) = ∅ | |
3 | 2 | xpeq2i 5699 | . . . 4 ⊢ (𝐴 × (𝐶 ∖ 𝐶)) = (𝐴 × ∅) |
4 | xp0 6156 | . . . 4 ⊢ (𝐴 × ∅) = ∅ | |
5 | 3, 4 | eqtri 2755 | . . 3 ⊢ (𝐴 × (𝐶 ∖ 𝐶)) = ∅ |
6 | 5 | uneq2i 4156 | . 2 ⊢ (((𝐴 ∖ 𝐵) × 𝐶) ∪ (𝐴 × (𝐶 ∖ 𝐶))) = (((𝐴 ∖ 𝐵) × 𝐶) ∪ ∅) |
7 | un0 4386 | . 2 ⊢ (((𝐴 ∖ 𝐵) × 𝐶) ∪ ∅) = ((𝐴 ∖ 𝐵) × 𝐶) | |
8 | 1, 6, 7 | 3eqtrri 2760 | 1 ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∖ cdif 3941 ∪ cun 3942 ∅c0 4318 × cxp 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 |
This theorem is referenced by: resdifdi 6234 difxp1ss 32312 sxbrsigalem2 33896 |
Copyright terms: Public domain | W3C validator |