| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difxp1 | Structured version Visualization version GIF version | ||
| Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| difxp1 | ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difxp 6111 | . 2 ⊢ ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) = (((𝐴 ∖ 𝐵) × 𝐶) ∪ (𝐴 × (𝐶 ∖ 𝐶))) | |
| 2 | difid 4326 | . . . . 5 ⊢ (𝐶 ∖ 𝐶) = ∅ | |
| 3 | 2 | xpeq2i 5643 | . . . 4 ⊢ (𝐴 × (𝐶 ∖ 𝐶)) = (𝐴 × ∅) |
| 4 | xp0 6105 | . . . 4 ⊢ (𝐴 × ∅) = ∅ | |
| 5 | 3, 4 | eqtri 2754 | . . 3 ⊢ (𝐴 × (𝐶 ∖ 𝐶)) = ∅ |
| 6 | 5 | uneq2i 4115 | . 2 ⊢ (((𝐴 ∖ 𝐵) × 𝐶) ∪ (𝐴 × (𝐶 ∖ 𝐶))) = (((𝐴 ∖ 𝐵) × 𝐶) ∪ ∅) |
| 7 | un0 4344 | . 2 ⊢ (((𝐴 ∖ 𝐵) × 𝐶) ∪ ∅) = ((𝐴 ∖ 𝐵) × 𝐶) | |
| 8 | 1, 6, 7 | 3eqtrri 2759 | 1 ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3899 ∪ cun 3900 ∅c0 4283 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 |
| This theorem is referenced by: resdifdi 6183 difxp1ss 32500 sxbrsigalem2 34297 |
| Copyright terms: Public domain | W3C validator |