![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difxp1 | Structured version Visualization version GIF version |
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
difxp1 | ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difxp 6164 | . 2 ⊢ ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) = (((𝐴 ∖ 𝐵) × 𝐶) ∪ (𝐴 × (𝐶 ∖ 𝐶))) | |
2 | difid 4371 | . . . . 5 ⊢ (𝐶 ∖ 𝐶) = ∅ | |
3 | 2 | xpeq2i 5704 | . . . 4 ⊢ (𝐴 × (𝐶 ∖ 𝐶)) = (𝐴 × ∅) |
4 | xp0 6158 | . . . 4 ⊢ (𝐴 × ∅) = ∅ | |
5 | 3, 4 | eqtri 2761 | . . 3 ⊢ (𝐴 × (𝐶 ∖ 𝐶)) = ∅ |
6 | 5 | uneq2i 4161 | . 2 ⊢ (((𝐴 ∖ 𝐵) × 𝐶) ∪ (𝐴 × (𝐶 ∖ 𝐶))) = (((𝐴 ∖ 𝐵) × 𝐶) ∪ ∅) |
7 | un0 4391 | . 2 ⊢ (((𝐴 ∖ 𝐵) × 𝐶) ∪ ∅) = ((𝐴 ∖ 𝐵) × 𝐶) | |
8 | 1, 6, 7 | 3eqtrri 2766 | 1 ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∖ cdif 3946 ∪ cun 3947 ∅c0 4323 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 |
This theorem is referenced by: resdifdi 6236 difxp1ss 31760 sxbrsigalem2 33285 |
Copyright terms: Public domain | W3C validator |