MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreghash2wspv Structured version   Visualization version   GIF version

Theorem fusgreghash2wspv 29342
Description: According to statement 7 in [Huneke] p. 2: "For each vertex v, there are exactly ( k 2 ) paths with length two having v in the middle, ..." in a finite k-regular graph. For directed simple paths of length 2 represented by length 3 strings, we have again k*(k-1) such paths, see also comment of frgrhash2wsp 29339. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgreghash2wspv (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1))))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺,𝑎,𝑣
Allowed substitution hints:   𝐾(𝑤,𝑣,𝑎)   𝑀(𝑤,𝑣,𝑎)   𝑉(𝑤,𝑣)

Proof of Theorem fusgreghash2wspv
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrhash2wsp.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 fusgreg2wsp.m . . . . . . 7 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
31, 2fusgr2wsp2nb 29341 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (𝑀𝑣) = 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
43fveq2d 6851 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (♯‘(𝑀𝑣)) = (♯‘ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}))
54adantr 481 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(𝑀𝑣)) = (♯‘ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}))
61eleq2i 2824 . . . . . . 7 (𝑣𝑉𝑣 ∈ (Vtx‘𝐺))
7 nbfiusgrfi 28386 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑣) ∈ Fin)
86, 7sylan2b 594 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) ∈ Fin)
98adantr 481 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 NeighbVtx 𝑣) ∈ Fin)
10 eqid 2731 . . . . 5 ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) = ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})
11 snfi 8995 . . . . . 6 {⟨“𝑐𝑣𝑑”⟩} ∈ Fin
1211a1i 11 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})) → {⟨“𝑐𝑣𝑑”⟩} ∈ Fin)
131nbgrssvtx 28353 . . . . . . . . . . 11 (𝐺 NeighbVtx 𝑣) ⊆ 𝑉
1413a1i 11 . . . . . . . . . 10 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → (𝐺 NeighbVtx 𝑣) ⊆ 𝑉)
1514ssdifd 4105 . . . . . . . . 9 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) ⊆ (𝑉 ∖ {𝑐}))
16 iunss1 4973 . . . . . . . . 9 (((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) ⊆ (𝑉 ∖ {𝑐}) → 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
1715, 16syl 17 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
1817ralrimiva 3139 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → ∀𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
19 simpr 485 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → 𝑣𝑉)
20 s3iunsndisj 14865 . . . . . . . 8 (𝑣𝑉Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2119, 20syl 17 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
22 disjss2 5078 . . . . . . 7 (∀𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} → (Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}))
2318, 21, 22sylc 65 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2423adantr 481 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2519adantr 481 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝑣𝑉)
2625anim1ci 616 . . . . . 6 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → (𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑣𝑉))
27 s3sndisj 14864 . . . . . 6 ((𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑣𝑉) → Disj 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2826, 27syl 17 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → Disj 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
29 s3cli 14782 . . . . . 6 ⟨“𝑐𝑣𝑑”⟩ ∈ Word V
30 hashsng 14279 . . . . . 6 (⟨“𝑐𝑣𝑑”⟩ ∈ Word V → (♯‘{⟨“𝑐𝑣𝑑”⟩}) = 1)
3129, 30mp1i 13 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})) → (♯‘{⟨“𝑐𝑣𝑑”⟩}) = 1)
329, 10, 12, 24, 28, 31hash2iun1dif1 15720 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}) = ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)))
33 fusgrusgr 28333 . . . . . . 7 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
341hashnbusgrvd 28539 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
3533, 34sylan 580 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
36 id 22 . . . . . . 7 ((♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
37 oveq1 7369 . . . . . . 7 ((♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣) → ((♯‘(𝐺 NeighbVtx 𝑣)) − 1) = (((VtxDeg‘𝐺)‘𝑣) − 1))
3836, 37oveq12d 7380 . . . . . 6 ((♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣) → ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)) = (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1)))
3935, 38syl 17 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)) = (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1)))
40 id 22 . . . . . 6 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((VtxDeg‘𝐺)‘𝑣) = 𝐾)
41 oveq1 7369 . . . . . 6 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) − 1) = (𝐾 − 1))
4240, 41oveq12d 7380 . . . . 5 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1)) = (𝐾 · (𝐾 − 1)))
4339, 42sylan9eq 2791 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)) = (𝐾 · (𝐾 − 1)))
445, 32, 433eqtrd 2775 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1)))
4544ex 413 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1))))
4645ralrimiva 3139 1 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  {crab 3405  Vcvv 3446  cdif 3910  wss 3913  {csn 4591   ciun 4959  Disj wdisj 5075  cmpt 5193  cfv 6501  (class class class)co 7362  Fincfn 8890  1c1 11061   · cmul 11065  cmin 11394  2c2 12217  chash 14240  Word cword 14414  ⟨“cs3 14743  Vtxcvtx 28010  USGraphcusgr 28163  FinUSGraphcfusgr 28327   NeighbVtx cnbgr 28343  VtxDegcvtxdg 28476   WSPathsN cwwspthsn 28836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-ac2 10408  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-oi 9455  df-dju 9846  df-card 9884  df-ac 10061  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-rp 12925  df-xadd 13043  df-fz 13435  df-fzo 13578  df-seq 13917  df-exp 13978  df-hash 14241  df-word 14415  df-concat 14471  df-s1 14496  df-s2 14749  df-s3 14750  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-sum 15583  df-vtx 28012  df-iedg 28013  df-edg 28062  df-uhgr 28072  df-ushgr 28073  df-upgr 28096  df-umgr 28097  df-uspgr 28164  df-usgr 28165  df-fusgr 28328  df-nbgr 28344  df-vtxdg 28477  df-wlks 28610  df-wlkson 28611  df-trls 28703  df-trlson 28704  df-pths 28727  df-spths 28728  df-pthson 28729  df-spthson 28730  df-wwlks 28838  df-wwlksn 28839  df-wwlksnon 28840  df-wspthsn 28841  df-wspthsnon 28842
This theorem is referenced by:  fusgreghash2wsp  29345
  Copyright terms: Public domain W3C validator