Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreghash2wspv Structured version   Visualization version   GIF version

Theorem fusgreghash2wspv 28120
 Description: According to statement 7 in [Huneke] p. 2: "For each vertex v, there are exactly ( k 2 ) paths with length two having v in the middle, ..." in a finite k-regular graph. For directed simple paths of length 2 represented by length 3 strings, we have again k*(k-1) such paths, see also comment of frgrhash2wsp 28117. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgreghash2wspv (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1))))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺,𝑎,𝑣
Allowed substitution hints:   𝐾(𝑤,𝑣,𝑎)   𝑀(𝑤,𝑣,𝑎)   𝑉(𝑤,𝑣)

Proof of Theorem fusgreghash2wspv
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrhash2wsp.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 fusgreg2wsp.m . . . . . . 7 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
31, 2fusgr2wsp2nb 28119 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (𝑀𝑣) = 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
43fveq2d 6649 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (♯‘(𝑀𝑣)) = (♯‘ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}))
54adantr 484 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(𝑀𝑣)) = (♯‘ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}))
61eleq2i 2881 . . . . . . 7 (𝑣𝑉𝑣 ∈ (Vtx‘𝐺))
7 nbfiusgrfi 27165 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑣) ∈ Fin)
86, 7sylan2b 596 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) ∈ Fin)
98adantr 484 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 NeighbVtx 𝑣) ∈ Fin)
10 eqid 2798 . . . . 5 ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) = ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})
11 snfi 8577 . . . . . 6 {⟨“𝑐𝑣𝑑”⟩} ∈ Fin
1211a1i 11 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})) → {⟨“𝑐𝑣𝑑”⟩} ∈ Fin)
131nbgrssvtx 27132 . . . . . . . . . . 11 (𝐺 NeighbVtx 𝑣) ⊆ 𝑉
1413a1i 11 . . . . . . . . . 10 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → (𝐺 NeighbVtx 𝑣) ⊆ 𝑉)
1514ssdifd 4068 . . . . . . . . 9 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) ⊆ (𝑉 ∖ {𝑐}))
16 iunss1 4895 . . . . . . . . 9 (((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) ⊆ (𝑉 ∖ {𝑐}) → 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
1715, 16syl 17 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
1817ralrimiva 3149 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → ∀𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
19 simpr 488 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → 𝑣𝑉)
20 s3iunsndisj 14319 . . . . . . . 8 (𝑣𝑉Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2119, 20syl 17 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
22 disjss2 4998 . . . . . . 7 (∀𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} ⊆ 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} → (Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ (𝑉 ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩} → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}))
2318, 21, 22sylc 65 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2423adantr 484 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2519adantr 484 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝑣𝑉)
2625anim1ci 618 . . . . . 6 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → (𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑣𝑉))
27 s3sndisj 14318 . . . . . 6 ((𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑣𝑉) → Disj 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
2826, 27syl 17 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → Disj 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩})
29 s3cli 14234 . . . . . 6 ⟨“𝑐𝑣𝑑”⟩ ∈ Word V
30 hashsng 13726 . . . . . 6 (⟨“𝑐𝑣𝑑”⟩ ∈ Word V → (♯‘{⟨“𝑐𝑣𝑑”⟩}) = 1)
3129, 30mp1i 13 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})) → (♯‘{⟨“𝑐𝑣𝑑”⟩}) = 1)
329, 10, 12, 24, 28, 31hash2iun1dif1 15171 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){⟨“𝑐𝑣𝑑”⟩}) = ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)))
33 fusgrusgr 27112 . . . . . . 7 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
341hashnbusgrvd 27318 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
3533, 34sylan 583 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
36 id 22 . . . . . . 7 ((♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
37 oveq1 7142 . . . . . . 7 ((♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣) → ((♯‘(𝐺 NeighbVtx 𝑣)) − 1) = (((VtxDeg‘𝐺)‘𝑣) − 1))
3836, 37oveq12d 7153 . . . . . 6 ((♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣) → ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)) = (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1)))
3935, 38syl 17 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)) = (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1)))
40 id 22 . . . . . 6 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((VtxDeg‘𝐺)‘𝑣) = 𝐾)
41 oveq1 7142 . . . . . 6 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) − 1) = (𝐾 − 1))
4240, 41oveq12d 7153 . . . . 5 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1)) = (𝐾 · (𝐾 − 1)))
4339, 42sylan9eq 2853 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((♯‘(𝐺 NeighbVtx 𝑣)) · ((♯‘(𝐺 NeighbVtx 𝑣)) − 1)) = (𝐾 · (𝐾 − 1)))
445, 32, 433eqtrd 2837 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1)))
4544ex 416 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1))))
4645ralrimiva 3149 1 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  Vcvv 3441   ∖ cdif 3878   ⊆ wss 3881  {csn 4525  ∪ ciun 4881  Disj wdisj 4995   ↦ cmpt 5110  ‘cfv 6324  (class class class)co 7135  Fincfn 8492  1c1 10527   · cmul 10531   − cmin 10859  2c2 11680  ♯chash 13686  Word cword 13857  ⟨“cs3 14195  Vtxcvtx 26789  USGraphcusgr 26942  FinUSGraphcfusgr 27106   NeighbVtx cnbgr 27122  VtxDegcvtxdg 27255   WSPathsN cwwspthsn 27614 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-dju 9314  df-card 9352  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-vtx 26791  df-iedg 26792  df-edg 26841  df-uhgr 26851  df-ushgr 26852  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-fusgr 27107  df-nbgr 27123  df-vtxdg 27256  df-wlks 27389  df-wlkson 27390  df-trls 27482  df-trlson 27483  df-pths 27505  df-spths 27506  df-pthson 27507  df-spthson 27508  df-wwlks 27616  df-wwlksn 27617  df-wwlksnon 27618  df-wspthsn 27619  df-wspthsnon 27620 This theorem is referenced by:  fusgreghash2wsp  28123
 Copyright terms: Public domain W3C validator