MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2 Structured version   Visualization version   GIF version

Theorem uniioombllem2 25484
Description: Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombllem2.h 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
uniioombllem2.k 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
uniioombllem2 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐾,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐻,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12836 . . 3 ℕ = (ℤ‘1)
2 eqid 2729 . . 3 seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))
3 1zzd 12564 . . 3 ((𝜑𝐽 ∈ ℕ) → 1 ∈ ℤ)
4 eqidd 2730 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) = (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . . . . . . . 10 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
8 uniioombl.a . . . . . . . . . 10 𝐴 = ran ((,) ∘ 𝐹)
9 uniioombl.e . . . . . . . . . 10 (𝜑 → (vol*‘𝐸) ∈ ℝ)
10 uniioombl.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
11 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12 uniioombl.s . . . . . . . . . 10 (𝜑𝐸 ran ((,) ∘ 𝐺))
13 uniioombl.t . . . . . . . . . 10 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
14 uniioombl.v . . . . . . . . . 10 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14uniioombllem2a 25483 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
16 uniioombllem2.h . . . . . . . . . 10 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
1716a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
18 uniioombllem2.k . . . . . . . . . . . 12 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
1918ioorf 25474 . . . . . . . . . . 11 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)))
2120feqmptd 6929 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐾 = (𝑦 ∈ ran (,) ↦ (𝐾𝑦)))
22 fveq2 6858 . . . . . . . . 9 (𝑦 = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) → (𝐾𝑦) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
2315, 17, 21, 22fmptco 7101 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
24 inss2 4201 . . . . . . . . . . 11 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽))
25 inss2 4201 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
2611ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
2725, 26sselid 3944 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
28 1st2nd2 8007 . . . . . . . . . . . . . . 15 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
2927, 28syl 17 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3029fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
31 df-ov 7390 . . . . . . . . . . . . 13 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3230, 31eqtr4di 2782 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
33 ioossre 13368 . . . . . . . . . . . 12 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) ⊆ ℝ
3432, 33eqsstrdi 3991 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) ⊆ ℝ)
3532fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
36 ovolfcl 25367 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
3711, 36sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
38 ovolioo 25469 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
3937, 38syl 17 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4035, 39eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4137simp2d 1143 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
4237simp1d 1142 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
4341, 42resubcld 11606 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))) ∈ ℝ)
4440, 43eqeltrd 2828 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ)
45 ovolsscl 25387 . . . . . . . . . . 11 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4624, 34, 44, 45mp3an2i 1468 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4746adantr 480 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4818ioorcl 25478 . . . . . . . . 9 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) ∧ (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
4915, 47, 48syl2anc 584 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
5023, 49fmpt3d 7088 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
51 eqid 2729 . . . . . . . 8 ((abs ∘ − ) ∘ (𝐾𝐻)) = ((abs ∘ − ) ∘ (𝐾𝐻))
5251ovolfsf 25372 . . . . . . 7 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5350, 52syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5453ffvelcdmda 7056 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞))
55 elrege0 13415 . . . . 5 ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5654, 55sylib 218 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5756simpld 494 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ)
5856simprd 495 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5923fveq1d 6860 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧))
60 fvex 6871 . . . . . . . . . . . . . . . 16 (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V
61 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6261fvmpt2 6979 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V) → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6360, 62mpan2 691 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6459, 63sylan9eq 2784 . . . . . . . . . . . . . 14 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6564fveq2d 6862 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
6618ioorinv 25477 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6715, 66syl 17 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6865, 67eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6968ralrimiva 3125 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
70 2fveq3 6863 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘((𝐾𝐻)‘𝑥)))
71 2fveq3 6863 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑥)))
7271ineq1d 4182 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7370, 72eqeq12d 2745 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ↔ ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽)))))
7473rspccva 3587 . . . . . . . . . . 11 ((∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7569, 74sylan 580 . . . . . . . . . 10 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
76 inss1 4200 . . . . . . . . . 10 (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐹𝑥))
7775, 76eqsstrdi 3991 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
7877ralrimiva 3125 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
796adantr 480 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
80 disjss2 5077 . . . . . . . 8 (∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)) → (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥))))
8178, 79, 80sylc 65 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)))
8250, 81, 2uniioovol 25480 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
8367mpteq2dva 5200 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
84 rexpssxrxp 11219 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8525, 84sstri 3956 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
8685, 49sselid 3944 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ (ℝ* × ℝ*))
87 ioof 13408 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8887a1i 11 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
8988feqmptd 6929 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (,) = (𝑦 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑦)))
90 fveq2 6858 . . . . . . . . . . . 12 (𝑦 = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) → ((,)‘𝑦) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
9186, 23, 89, 90fmptco 7101 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))))
9283, 91, 173eqtr4d 2774 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = 𝐻)
9392rneqd 5902 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
9493unieqd 4884 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
95 fvex 6871 . . . . . . . . . . . . . 14 ((,)‘(𝐹𝑧)) ∈ V
9695inex1 5272 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V
9716fvmpt2 6979 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V) → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
9896, 97mpan2 691 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
99 incom 4172 . . . . . . . . . . . 12 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
10098, 99eqtrdi 2780 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))))
101100iuneq2i 4977 . . . . . . . . . 10 𝑧 ∈ ℕ (𝐻𝑧) = 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
102 iunin2 5035 . . . . . . . . . 10 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
103101, 102eqtri 2752 . . . . . . . . 9 𝑧 ∈ ℕ (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
10415, 16fmptd 7086 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝐻:ℕ⟶ran (,))
105104ffnd 6689 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐻 Fn ℕ)
106 fniunfv 7221 . . . . . . . . . 10 (𝐻 Fn ℕ → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
107105, 106syl 17 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
108103, 107eqtr3id 2778 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = ran 𝐻)
1095adantr 480 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
110 fvco3 6960 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
111109, 110sylan 580 . . . . . . . . . . 11 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
112111iuneq2dv 4980 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
113 ffn 6688 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11487, 113ax-mp 5 . . . . . . . . . . . . 13 (,) Fn (ℝ* × ℝ*)
115 fss 6704 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
116109, 85, 115sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
117 fnfco 6725 . . . . . . . . . . . . 13 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
118114, 116, 117sylancr 587 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ 𝐹) Fn ℕ)
119 fniunfv 7221 . . . . . . . . . . . 12 (((,) ∘ 𝐹) Fn ℕ → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
120118, 119syl 17 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
121120, 8eqtr4di 2782 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝐴)
122112, 121eqtr3d 2766 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)) = 𝐴)
123122ineq2d 4183 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
12494, 108, 1233eqtr2d 2770 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
125124fveq2d 6862 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
12682, 125eqtr3d 2766 . . . . 5 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
127 inss1 4200 . . . . . 6 (((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽))
128 ovolsscl 25387 . . . . . 6 (((((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
129127, 34, 44, 128mp3an2i 1468 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
130126, 129eqeltrd 2828 . . . 4 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ)
13151, 2ovolsf 25373 . . . . . . . . 9 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
13250, 131syl 17 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
133132frnd 6696 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ (0[,)+∞))
134 icossxr 13393 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
135133, 134sstrdi 3959 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ*)
136132ffnd 6689 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ)
137 fnfvelrn 7052 . . . . . . 7 ((seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
138136, 137sylan 580 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
139 supxrub 13284 . . . . . 6 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
140135, 138, 139syl2an2r 685 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
141140ralrimiva 3125 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
142 brralrspcev 5167 . . . 4 ((sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ ∧ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
143130, 141, 142syl2anc 584 . . 3 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
1441, 2, 3, 4, 57, 58, 143isumsup2 15812 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⇝ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
14551ovolfs2 25472 . . . . 5 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
14650, 145syl 17 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
147 coass 6238 . . . . 5 ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ ((,) ∘ (𝐾𝐻)))
14892coeq2d 5826 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol* ∘ ((,) ∘ (𝐾𝐻))) = (vol* ∘ 𝐻))
149147, 148eqtrid 2776 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
150146, 149eqtrd 2764 . . 3 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
151150seqeq3d 13974 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , (vol* ∘ 𝐻)))
152 rge0ssre 13417 . . . . 5 (0[,)+∞) ⊆ ℝ
153133, 152sstrdi 3959 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ)
154 1nn 12197 . . . . . . 7 1 ∈ ℕ
155132fdmd 6698 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ℕ)
156154, 155eleqtrrid 2835 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → 1 ∈ dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
157156ne0d 4305 . . . . 5 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
158 dm0rn0 5888 . . . . . 6 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅)
159158necon3bii 2977 . . . . 5 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
160157, 159sylib 218 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
161 breq1 5110 . . . . . . . 8 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) → (𝑧𝑥 ↔ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
162161ralrn 7060 . . . . . . 7 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
163136, 162syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
164163rexbidv 3157 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
165143, 164mpbird 257 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥)
166 supxrre 13287 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ ∧ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
167153, 160, 165, 166syl3anc 1373 . . 3 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
168167, 126eqtr3d 2766 . 2 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
169144, 151, 1683brtr3d 5138 1 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  cop 4595   cuni 4871   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  supcsup 9391  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405  cn 12186  +crp 12951  (,)cioo 13306  [,)cico 13308  seqcseq 13966  abscabs 15200  cli 15450  vol*covol 25363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366
This theorem is referenced by:  uniioombllem6  25489
  Copyright terms: Public domain W3C validator