MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2 Structured version   Visualization version   GIF version

Theorem uniioombllem2 25631
Description: Lemma for uniioombl 25637. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombllem2.h 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
uniioombllem2.k 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
uniioombllem2 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐾,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐻,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12918 . . 3 ℕ = (ℤ‘1)
2 eqid 2734 . . 3 seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))
3 1zzd 12645 . . 3 ((𝜑𝐽 ∈ ℕ) → 1 ∈ ℤ)
4 eqidd 2735 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) = (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . . . . . . . 10 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
8 uniioombl.a . . . . . . . . . 10 𝐴 = ran ((,) ∘ 𝐹)
9 uniioombl.e . . . . . . . . . 10 (𝜑 → (vol*‘𝐸) ∈ ℝ)
10 uniioombl.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
11 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12 uniioombl.s . . . . . . . . . 10 (𝜑𝐸 ran ((,) ∘ 𝐺))
13 uniioombl.t . . . . . . . . . 10 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
14 uniioombl.v . . . . . . . . . 10 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14uniioombllem2a 25630 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
16 uniioombllem2.h . . . . . . . . . 10 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
1716a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
18 uniioombllem2.k . . . . . . . . . . . 12 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
1918ioorf 25621 . . . . . . . . . . 11 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)))
2120feqmptd 6976 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐾 = (𝑦 ∈ ran (,) ↦ (𝐾𝑦)))
22 fveq2 6906 . . . . . . . . 9 (𝑦 = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) → (𝐾𝑦) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
2315, 17, 21, 22fmptco 7148 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
24 inss2 4245 . . . . . . . . . . 11 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽))
25 inss2 4245 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
2611ffvelcdmda 7103 . . . . . . . . . . . . . . . 16 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
2725, 26sselid 3992 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
28 1st2nd2 8051 . . . . . . . . . . . . . . 15 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
2927, 28syl 17 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3029fveq2d 6910 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
31 df-ov 7433 . . . . . . . . . . . . 13 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3230, 31eqtr4di 2792 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
33 ioossre 13444 . . . . . . . . . . . 12 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) ⊆ ℝ
3432, 33eqsstrdi 4049 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) ⊆ ℝ)
3532fveq2d 6910 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
36 ovolfcl 25514 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
3711, 36sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
38 ovolioo 25616 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
3937, 38syl 17 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4035, 39eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4137simp2d 1142 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
4237simp1d 1141 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
4341, 42resubcld 11688 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))) ∈ ℝ)
4440, 43eqeltrd 2838 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ)
45 ovolsscl 25534 . . . . . . . . . . 11 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4624, 34, 44, 45mp3an2i 1465 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4746adantr 480 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4818ioorcl 25625 . . . . . . . . 9 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) ∧ (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
4915, 47, 48syl2anc 584 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
5023, 49fmpt3d 7135 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
51 eqid 2734 . . . . . . . 8 ((abs ∘ − ) ∘ (𝐾𝐻)) = ((abs ∘ − ) ∘ (𝐾𝐻))
5251ovolfsf 25519 . . . . . . 7 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5350, 52syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5453ffvelcdmda 7103 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞))
55 elrege0 13490 . . . . 5 ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5654, 55sylib 218 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5756simpld 494 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ)
5856simprd 495 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5923fveq1d 6908 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧))
60 fvex 6919 . . . . . . . . . . . . . . . 16 (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V
61 eqid 2734 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6261fvmpt2 7026 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V) → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6360, 62mpan2 691 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6459, 63sylan9eq 2794 . . . . . . . . . . . . . 14 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6564fveq2d 6910 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
6618ioorinv 25624 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6715, 66syl 17 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6865, 67eqtrd 2774 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6968ralrimiva 3143 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
70 2fveq3 6911 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘((𝐾𝐻)‘𝑥)))
71 2fveq3 6911 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑥)))
7271ineq1d 4226 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7370, 72eqeq12d 2750 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ↔ ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽)))))
7473rspccva 3620 . . . . . . . . . . 11 ((∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7569, 74sylan 580 . . . . . . . . . 10 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
76 inss1 4244 . . . . . . . . . 10 (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐹𝑥))
7775, 76eqsstrdi 4049 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
7877ralrimiva 3143 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
796adantr 480 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
80 disjss2 5117 . . . . . . . 8 (∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)) → (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥))))
8178, 79, 80sylc 65 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)))
8250, 81, 2uniioovol 25627 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
8367mpteq2dva 5247 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
84 rexpssxrxp 11303 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8525, 84sstri 4004 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
8685, 49sselid 3992 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ (ℝ* × ℝ*))
87 ioof 13483 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8887a1i 11 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
8988feqmptd 6976 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (,) = (𝑦 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑦)))
90 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) → ((,)‘𝑦) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
9186, 23, 89, 90fmptco 7148 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))))
9283, 91, 173eqtr4d 2784 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = 𝐻)
9392rneqd 5951 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
9493unieqd 4924 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
95 fvex 6919 . . . . . . . . . . . . . 14 ((,)‘(𝐹𝑧)) ∈ V
9695inex1 5322 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V
9716fvmpt2 7026 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V) → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
9896, 97mpan2 691 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
99 incom 4216 . . . . . . . . . . . 12 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
10098, 99eqtrdi 2790 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))))
101100iuneq2i 5017 . . . . . . . . . 10 𝑧 ∈ ℕ (𝐻𝑧) = 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
102 iunin2 5075 . . . . . . . . . 10 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
103101, 102eqtri 2762 . . . . . . . . 9 𝑧 ∈ ℕ (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
10415, 16fmptd 7133 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝐻:ℕ⟶ran (,))
105104ffnd 6737 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐻 Fn ℕ)
106 fniunfv 7266 . . . . . . . . . 10 (𝐻 Fn ℕ → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
107105, 106syl 17 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
108103, 107eqtr3id 2788 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = ran 𝐻)
1095adantr 480 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
110 fvco3 7007 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
111109, 110sylan 580 . . . . . . . . . . 11 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
112111iuneq2dv 5020 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
113 ffn 6736 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11487, 113ax-mp 5 . . . . . . . . . . . . 13 (,) Fn (ℝ* × ℝ*)
115 fss 6752 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
116109, 85, 115sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
117 fnfco 6773 . . . . . . . . . . . . 13 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
118114, 116, 117sylancr 587 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ 𝐹) Fn ℕ)
119 fniunfv 7266 . . . . . . . . . . . 12 (((,) ∘ 𝐹) Fn ℕ → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
120118, 119syl 17 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
121120, 8eqtr4di 2792 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝐴)
122112, 121eqtr3d 2776 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)) = 𝐴)
123122ineq2d 4227 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
12494, 108, 1233eqtr2d 2780 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
125124fveq2d 6910 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
12682, 125eqtr3d 2776 . . . . 5 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
127 inss1 4244 . . . . . 6 (((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽))
128 ovolsscl 25534 . . . . . 6 (((((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
129127, 34, 44, 128mp3an2i 1465 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
130126, 129eqeltrd 2838 . . . 4 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ)
13151, 2ovolsf 25520 . . . . . . . . 9 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
13250, 131syl 17 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
133132frnd 6744 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ (0[,)+∞))
134 icossxr 13468 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
135133, 134sstrdi 4007 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ*)
136132ffnd 6737 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ)
137 fnfvelrn 7099 . . . . . . 7 ((seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
138136, 137sylan 580 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
139 supxrub 13362 . . . . . 6 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
140135, 138, 139syl2an2r 685 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
141140ralrimiva 3143 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
142 brralrspcev 5207 . . . 4 ((sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ ∧ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
143130, 141, 142syl2anc 584 . . 3 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
1441, 2, 3, 4, 57, 58, 143isumsup2 15878 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⇝ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
14551ovolfs2 25619 . . . . 5 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
14650, 145syl 17 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
147 coass 6286 . . . . 5 ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ ((,) ∘ (𝐾𝐻)))
14892coeq2d 5875 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol* ∘ ((,) ∘ (𝐾𝐻))) = (vol* ∘ 𝐻))
149147, 148eqtrid 2786 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
150146, 149eqtrd 2774 . . 3 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
151150seqeq3d 14046 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , (vol* ∘ 𝐻)))
152 rge0ssre 13492 . . . . 5 (0[,)+∞) ⊆ ℝ
153133, 152sstrdi 4007 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ)
154 1nn 12274 . . . . . . 7 1 ∈ ℕ
155132fdmd 6746 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ℕ)
156154, 155eleqtrrid 2845 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → 1 ∈ dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
157156ne0d 4347 . . . . 5 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
158 dm0rn0 5937 . . . . . 6 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅)
159158necon3bii 2990 . . . . 5 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
160157, 159sylib 218 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
161 breq1 5150 . . . . . . . 8 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) → (𝑧𝑥 ↔ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
162161ralrn 7107 . . . . . . 7 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
163136, 162syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
164163rexbidv 3176 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
165143, 164mpbird 257 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥)
166 supxrre 13365 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ ∧ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
167153, 160, 165, 166syl3anc 1370 . . 3 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
168167, 126eqtr3d 2776 . 2 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
169144, 151, 1683brtr3d 5178 1 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cin 3961  wss 3962  c0 4338  ifcif 4530  𝒫 cpw 4604  cop 4636   cuni 4911   ciun 4995  Disj wdisj 5114   class class class wbr 5147  cmpt 5230   × cxp 5686  dom cdm 5688  ran crn 5689  ccom 5692   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  1st c1st 8010  2nd c2nd 8011  supcsup 9477  infcinf 9478  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cmin 11489  cn 12263  +crp 13031  (,)cioo 13383  [,)cico 13385  seqcseq 14038  abscabs 15269  cli 15516  vol*covol 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512  df-vol 25513
This theorem is referenced by:  uniioombllem6  25636
  Copyright terms: Public domain W3C validator