MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2 Structured version   Visualization version   GIF version

Theorem uniioombllem2 23867
Description: Lemma for uniioombl 23873. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombllem2.h 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
uniioombllem2.k 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
uniioombllem2 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐾,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐻,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12130 . . 3 ℕ = (ℤ‘1)
2 eqid 2795 . . 3 seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))
3 1zzd 11862 . . 3 ((𝜑𝐽 ∈ ℕ) → 1 ∈ ℤ)
4 eqidd 2796 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) = (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . . . . . . . 10 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
8 uniioombl.a . . . . . . . . . 10 𝐴 = ran ((,) ∘ 𝐹)
9 uniioombl.e . . . . . . . . . 10 (𝜑 → (vol*‘𝐸) ∈ ℝ)
10 uniioombl.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
11 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12 uniioombl.s . . . . . . . . . 10 (𝜑𝐸 ran ((,) ∘ 𝐺))
13 uniioombl.t . . . . . . . . . 10 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
14 uniioombl.v . . . . . . . . . 10 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14uniioombllem2a 23866 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
16 uniioombllem2.h . . . . . . . . . 10 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
1716a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
18 uniioombllem2.k . . . . . . . . . . . 12 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
1918ioorf 23857 . . . . . . . . . . 11 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)))
2120feqmptd 6601 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐾 = (𝑦 ∈ ran (,) ↦ (𝐾𝑦)))
22 fveq2 6538 . . . . . . . . 9 (𝑦 = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) → (𝐾𝑦) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
2315, 17, 21, 22fmptco 6754 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
24 inss2 4126 . . . . . . . . . . 11 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽))
25 inss2 4126 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
2611ffvelrnda 6716 . . . . . . . . . . . . . . . 16 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
2725, 26sseldi 3887 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
28 1st2nd2 7584 . . . . . . . . . . . . . . 15 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
2927, 28syl 17 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3029fveq2d 6542 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
31 df-ov 7019 . . . . . . . . . . . . 13 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3230, 31syl6eqr 2849 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
33 ioossre 12648 . . . . . . . . . . . 12 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) ⊆ ℝ
3432, 33syl6eqss 3942 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) ⊆ ℝ)
3532fveq2d 6542 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
36 ovolfcl 23750 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
3711, 36sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
38 ovolioo 23852 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
3937, 38syl 17 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4035, 39eqtrd 2831 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4137simp2d 1136 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
4237simp1d 1135 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
4341, 42resubcld 10916 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))) ∈ ℝ)
4440, 43eqeltrd 2883 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ)
45 ovolsscl 23770 . . . . . . . . . . 11 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4624, 34, 44, 45mp3an2i 1458 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4746adantr 481 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4818ioorcl 23861 . . . . . . . . 9 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) ∧ (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
4915, 47, 48syl2anc 584 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
5023, 49fmpt3d 6743 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
51 eqid 2795 . . . . . . . 8 ((abs ∘ − ) ∘ (𝐾𝐻)) = ((abs ∘ − ) ∘ (𝐾𝐻))
5251ovolfsf 23755 . . . . . . 7 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5350, 52syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5453ffvelrnda 6716 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞))
55 elrege0 12692 . . . . 5 ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5654, 55sylib 219 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5756simpld 495 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ)
5856simprd 496 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5923fveq1d 6540 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧))
60 fvex 6551 . . . . . . . . . . . . . . . 16 (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V
61 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6261fvmpt2 6645 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V) → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6360, 62mpan2 687 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6459, 63sylan9eq 2851 . . . . . . . . . . . . . 14 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6564fveq2d 6542 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
6618ioorinv 23860 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6715, 66syl 17 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6865, 67eqtrd 2831 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6968ralrimiva 3149 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
70 2fveq3 6543 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘((𝐾𝐻)‘𝑥)))
71 2fveq3 6543 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑥)))
7271ineq1d 4108 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7370, 72eqeq12d 2810 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ↔ ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽)))))
7473rspccva 3558 . . . . . . . . . . 11 ((∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7569, 74sylan 580 . . . . . . . . . 10 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
76 inss1 4125 . . . . . . . . . 10 (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐹𝑥))
7775, 76syl6eqss 3942 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
7877ralrimiva 3149 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
796adantr 481 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
80 disjss2 4933 . . . . . . . 8 (∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)) → (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥))))
8178, 79, 80sylc 65 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)))
8250, 81, 2uniioovol 23863 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
8367mpteq2dva 5055 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
84 rexpssxrxp 10532 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8525, 84sstri 3898 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
8685, 49sseldi 3887 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ (ℝ* × ℝ*))
87 ioof 12685 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8887a1i 11 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
8988feqmptd 6601 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (,) = (𝑦 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑦)))
90 fveq2 6538 . . . . . . . . . . . 12 (𝑦 = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) → ((,)‘𝑦) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
9186, 23, 89, 90fmptco 6754 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))))
9283, 91, 173eqtr4d 2841 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = 𝐻)
9392rneqd 5690 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
9493unieqd 4755 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
95 fvex 6551 . . . . . . . . . . . . . 14 ((,)‘(𝐹𝑧)) ∈ V
9695inex1 5112 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V
9716fvmpt2 6645 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V) → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
9896, 97mpan2 687 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
99 incom 4099 . . . . . . . . . . . 12 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
10098, 99syl6eq 2847 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))))
101100iuneq2i 4845 . . . . . . . . . 10 𝑧 ∈ ℕ (𝐻𝑧) = 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
102 iunin2 4892 . . . . . . . . . 10 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
103101, 102eqtri 2819 . . . . . . . . 9 𝑧 ∈ ℕ (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
10415, 16fmptd 6741 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝐻:ℕ⟶ran (,))
105104ffnd 6383 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐻 Fn ℕ)
106 fniunfv 6871 . . . . . . . . . 10 (𝐻 Fn ℕ → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
107105, 106syl 17 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
108103, 107syl5eqr 2845 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = ran 𝐻)
1095adantr 481 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
110 fvco3 6627 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
111109, 110sylan 580 . . . . . . . . . . 11 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
112111iuneq2dv 4848 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
113 ffn 6382 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11487, 113ax-mp 5 . . . . . . . . . . . . 13 (,) Fn (ℝ* × ℝ*)
115 fss 6395 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
116109, 85, 115sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
117 fnfco 6411 . . . . . . . . . . . . 13 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
118114, 116, 117sylancr 587 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ 𝐹) Fn ℕ)
119 fniunfv 6871 . . . . . . . . . . . 12 (((,) ∘ 𝐹) Fn ℕ → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
120118, 119syl 17 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
121120, 8syl6eqr 2849 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝐴)
122112, 121eqtr3d 2833 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)) = 𝐴)
123122ineq2d 4109 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
12494, 108, 1233eqtr2d 2837 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
125124fveq2d 6542 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
12682, 125eqtr3d 2833 . . . . 5 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
127 inss1 4125 . . . . . 6 (((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽))
128 ovolsscl 23770 . . . . . 6 (((((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
129127, 34, 44, 128mp3an2i 1458 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
130126, 129eqeltrd 2883 . . . 4 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ)
13151, 2ovolsf 23756 . . . . . . . . 9 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
13250, 131syl 17 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
133132frnd 6389 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ (0[,)+∞))
134 icossxr 12671 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
135133, 134syl6ss 3901 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ*)
136132ffnd 6383 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ)
137 fnfvelrn 6713 . . . . . . 7 ((seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
138136, 137sylan 580 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
139 supxrub 12567 . . . . . 6 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
140135, 138, 139syl2an2r 681 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
141140ralrimiva 3149 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
142 brralrspcev 5022 . . . 4 ((sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ ∧ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
143130, 141, 142syl2anc 584 . . 3 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
1441, 2, 3, 4, 57, 58, 143isumsup2 15034 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⇝ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
14551ovolfs2 23855 . . . . 5 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
14650, 145syl 17 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
147 coass 5993 . . . . 5 ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ ((,) ∘ (𝐾𝐻)))
14892coeq2d 5619 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol* ∘ ((,) ∘ (𝐾𝐻))) = (vol* ∘ 𝐻))
149147, 148syl5eq 2843 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
150146, 149eqtrd 2831 . . 3 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
151150seqeq3d 13227 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , (vol* ∘ 𝐻)))
152 rge0ssre 12694 . . . . 5 (0[,)+∞) ⊆ ℝ
153133, 152syl6ss 3901 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ)
154 1nn 11497 . . . . . . 7 1 ∈ ℕ
155132fdmd 6391 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ℕ)
156154, 155syl5eleqr 2890 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → 1 ∈ dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
157156ne0d 4221 . . . . 5 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
158 dm0rn0 5679 . . . . . 6 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅)
159158necon3bii 3036 . . . . 5 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
160157, 159sylib 219 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
161 breq1 4965 . . . . . . . 8 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) → (𝑧𝑥 ↔ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
162161ralrn 6719 . . . . . . 7 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
163136, 162syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
164163rexbidv 3260 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
165143, 164mpbird 258 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥)
166 supxrre 12570 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ ∧ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
167153, 160, 165, 166syl3anc 1364 . . 3 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
168167, 126eqtr3d 2833 . 2 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
169144, 151, 1683brtr3d 4993 1 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  cin 3858  wss 3859  c0 4211  ifcif 4381  𝒫 cpw 4453  cop 4478   cuni 4745   ciun 4825  Disj wdisj 4930   class class class wbr 4962  cmpt 5041   × cxp 5441  dom cdm 5443  ran crn 5444  ccom 5447   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  1st c1st 7543  2nd c2nd 7544  supcsup 8750  infcinf 8751  cr 10382  0cc0 10383  1c1 10384   + caddc 10386  +∞cpnf 10518  *cxr 10520   < clt 10521  cle 10522  cmin 10717  cn 11486  +crp 12239  (,)cioo 12588  [,)cico 12590  seqcseq 13219  abscabs 14427  cli 14675  vol*covol 23746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-rlim 14680  df-sum 14877  df-rest 16525  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-top 21186  df-topon 21203  df-bases 21238  df-cmp 21679  df-ovol 23748  df-vol 23749
This theorem is referenced by:  uniioombllem6  23872
  Copyright terms: Public domain W3C validator