MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2 Structured version   Visualization version   GIF version

Theorem uniioombllem2 25637
Description: Lemma for uniioombl 25643. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombllem2.h 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
uniioombllem2.k 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
uniioombllem2 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐾,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐻,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12946 . . 3 ℕ = (ℤ‘1)
2 eqid 2740 . . 3 seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))
3 1zzd 12674 . . 3 ((𝜑𝐽 ∈ ℕ) → 1 ∈ ℤ)
4 eqidd 2741 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) = (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . . . . . . . 10 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
8 uniioombl.a . . . . . . . . . 10 𝐴 = ran ((,) ∘ 𝐹)
9 uniioombl.e . . . . . . . . . 10 (𝜑 → (vol*‘𝐸) ∈ ℝ)
10 uniioombl.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
11 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12 uniioombl.s . . . . . . . . . 10 (𝜑𝐸 ran ((,) ∘ 𝐺))
13 uniioombl.t . . . . . . . . . 10 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
14 uniioombl.v . . . . . . . . . 10 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14uniioombllem2a 25636 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
16 uniioombllem2.h . . . . . . . . . 10 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
1716a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
18 uniioombllem2.k . . . . . . . . . . . 12 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
1918ioorf 25627 . . . . . . . . . . 11 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)))
2120feqmptd 6990 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐾 = (𝑦 ∈ ran (,) ↦ (𝐾𝑦)))
22 fveq2 6920 . . . . . . . . 9 (𝑦 = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) → (𝐾𝑦) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
2315, 17, 21, 22fmptco 7163 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
24 inss2 4259 . . . . . . . . . . 11 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽))
25 inss2 4259 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
2611ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
2725, 26sselid 4006 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
28 1st2nd2 8069 . . . . . . . . . . . . . . 15 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
2927, 28syl 17 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3029fveq2d 6924 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
31 df-ov 7451 . . . . . . . . . . . . 13 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
3230, 31eqtr4di 2798 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
33 ioossre 13468 . . . . . . . . . . . 12 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) ⊆ ℝ
3432, 33eqsstrdi 4063 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) ⊆ ℝ)
3532fveq2d 6924 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
36 ovolfcl 25520 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
3711, 36sylan 579 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
38 ovolioo 25622 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
3937, 38syl 17 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4035, 39eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
4137simp2d 1143 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
4237simp1d 1142 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
4341, 42resubcld 11718 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))) ∈ ℝ)
4440, 43eqeltrd 2844 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ)
45 ovolsscl 25540 . . . . . . . . . . 11 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4624, 34, 44, 45mp3an2i 1466 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4746adantr 480 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4818ioorcl 25631 . . . . . . . . 9 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) ∧ (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
4915, 47, 48syl2anc 583 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
5023, 49fmpt3d 7150 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
51 eqid 2740 . . . . . . . 8 ((abs ∘ − ) ∘ (𝐾𝐻)) = ((abs ∘ − ) ∘ (𝐾𝐻))
5251ovolfsf 25525 . . . . . . 7 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5350, 52syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5453ffvelcdmda 7118 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞))
55 elrege0 13514 . . . . 5 ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5654, 55sylib 218 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
5756simpld 494 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ)
5856simprd 495 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5923fveq1d 6922 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧))
60 fvex 6933 . . . . . . . . . . . . . . . 16 (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V
61 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6261fvmpt2 7040 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V) → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6360, 62mpan2 690 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6459, 63sylan9eq 2800 . . . . . . . . . . . . . 14 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6564fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
6618ioorinv 25630 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6715, 66syl 17 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6865, 67eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
6968ralrimiva 3152 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
70 2fveq3 6925 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘((𝐾𝐻)‘𝑥)))
71 2fveq3 6925 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑥)))
7271ineq1d 4240 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7370, 72eqeq12d 2756 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ↔ ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽)))))
7473rspccva 3634 . . . . . . . . . . 11 ((∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7569, 74sylan 579 . . . . . . . . . 10 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
76 inss1 4258 . . . . . . . . . 10 (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐹𝑥))
7775, 76eqsstrdi 4063 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
7877ralrimiva 3152 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
796adantr 480 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
80 disjss2 5136 . . . . . . . 8 (∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)) → (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥))))
8178, 79, 80sylc 65 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)))
8250, 81, 2uniioovol 25633 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
8367mpteq2dva 5266 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
84 rexpssxrxp 11335 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8525, 84sstri 4018 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
8685, 49sselid 4006 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ (ℝ* × ℝ*))
87 ioof 13507 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8887a1i 11 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
8988feqmptd 6990 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (,) = (𝑦 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑦)))
90 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) → ((,)‘𝑦) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
9186, 23, 89, 90fmptco 7163 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))))
9283, 91, 173eqtr4d 2790 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = 𝐻)
9392rneqd 5963 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
9493unieqd 4944 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
95 fvex 6933 . . . . . . . . . . . . . 14 ((,)‘(𝐹𝑧)) ∈ V
9695inex1 5335 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V
9716fvmpt2 7040 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V) → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
9896, 97mpan2 690 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
99 incom 4230 . . . . . . . . . . . 12 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
10098, 99eqtrdi 2796 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))))
101100iuneq2i 5036 . . . . . . . . . 10 𝑧 ∈ ℕ (𝐻𝑧) = 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
102 iunin2 5094 . . . . . . . . . 10 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
103101, 102eqtri 2768 . . . . . . . . 9 𝑧 ∈ ℕ (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
10415, 16fmptd 7148 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝐻:ℕ⟶ran (,))
105104ffnd 6748 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐻 Fn ℕ)
106 fniunfv 7284 . . . . . . . . . 10 (𝐻 Fn ℕ → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
107105, 106syl 17 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
108103, 107eqtr3id 2794 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = ran 𝐻)
1095adantr 480 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
110 fvco3 7021 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
111109, 110sylan 579 . . . . . . . . . . 11 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
112111iuneq2dv 5039 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
113 ffn 6747 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11487, 113ax-mp 5 . . . . . . . . . . . . 13 (,) Fn (ℝ* × ℝ*)
115 fss 6763 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
116109, 85, 115sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
117 fnfco 6786 . . . . . . . . . . . . 13 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
118114, 116, 117sylancr 586 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ 𝐹) Fn ℕ)
119 fniunfv 7284 . . . . . . . . . . . 12 (((,) ∘ 𝐹) Fn ℕ → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
120118, 119syl 17 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
121120, 8eqtr4di 2798 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝐴)
122112, 121eqtr3d 2782 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)) = 𝐴)
123122ineq2d 4241 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
12494, 108, 1233eqtr2d 2786 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
125124fveq2d 6924 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
12682, 125eqtr3d 2782 . . . . 5 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
127 inss1 4258 . . . . . 6 (((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽))
128 ovolsscl 25540 . . . . . 6 (((((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
129127, 34, 44, 128mp3an2i 1466 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
130126, 129eqeltrd 2844 . . . 4 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ)
13151, 2ovolsf 25526 . . . . . . . . 9 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
13250, 131syl 17 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
133132frnd 6755 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ (0[,)+∞))
134 icossxr 13492 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
135133, 134sstrdi 4021 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ*)
136132ffnd 6748 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ)
137 fnfvelrn 7114 . . . . . . 7 ((seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
138136, 137sylan 579 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
139 supxrub 13386 . . . . . 6 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
140135, 138, 139syl2an2r 684 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
141140ralrimiva 3152 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
142 brralrspcev 5226 . . . 4 ((sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ ∧ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
143130, 141, 142syl2anc 583 . . 3 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
1441, 2, 3, 4, 57, 58, 143isumsup2 15894 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⇝ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
14551ovolfs2 25625 . . . . 5 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
14650, 145syl 17 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
147 coass 6296 . . . . 5 ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ ((,) ∘ (𝐾𝐻)))
14892coeq2d 5887 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol* ∘ ((,) ∘ (𝐾𝐻))) = (vol* ∘ 𝐻))
149147, 148eqtrid 2792 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
150146, 149eqtrd 2780 . . 3 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
151150seqeq3d 14060 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , (vol* ∘ 𝐻)))
152 rge0ssre 13516 . . . . 5 (0[,)+∞) ⊆ ℝ
153133, 152sstrdi 4021 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ)
154 1nn 12304 . . . . . . 7 1 ∈ ℕ
155132fdmd 6757 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ℕ)
156154, 155eleqtrrid 2851 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → 1 ∈ dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
157156ne0d 4365 . . . . 5 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
158 dm0rn0 5949 . . . . . 6 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅)
159158necon3bii 2999 . . . . 5 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
160157, 159sylib 218 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
161 breq1 5169 . . . . . . . 8 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) → (𝑧𝑥 ↔ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
162161ralrn 7122 . . . . . . 7 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
163136, 162syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
164163rexbidv 3185 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
165143, 164mpbird 257 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥)
166 supxrre 13389 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ ∧ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
167153, 160, 165, 166syl3anc 1371 . . 3 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
168167, 126eqtr3d 2782 . 2 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
169144, 151, 1683brtr3d 5197 1 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  cop 4654   cuni 4931   ciun 5015  Disj wdisj 5133   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  supcsup 9509  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  +crp 13057  (,)cioo 13407  [,)cico 13409  seqcseq 14052  abscabs 15283  cli 15530  vol*covol 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519
This theorem is referenced by:  uniioombllem6  25642
  Copyright terms: Public domain W3C validator