| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoeq | Structured version Visualization version GIF version | ||
| Description: Domain of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| dmcoeq | ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 4003 | . 2 ⊢ (dom 𝐴 = ran 𝐵 → ran 𝐵 ⊆ dom 𝐴) | |
| 2 | dmcosseq 5929 | . 2 ⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 dom cdm 5631 ran crn 5632 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: rncoeq 5932 dfdm2 6242 funcocnv2 6807 |
| Copyright terms: Public domain | W3C validator |