MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoeq Structured version   Visualization version   GIF version

Theorem dmcoeq 5919
Description: Domain of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
dmcoeq (dom 𝐴 = ran 𝐵 → dom (𝐴𝐵) = dom 𝐵)

Proof of Theorem dmcoeq
StepHypRef Expression
1 eqimss2 3989 . 2 (dom 𝐴 = ran 𝐵 → ran 𝐵 ⊆ dom 𝐴)
2 dmcosseq 5916 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
31, 2syl 17 1 (dom 𝐴 = ran 𝐵 → dom (𝐴𝐵) = dom 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3897  dom cdm 5614  ran crn 5615  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625
This theorem is referenced by:  rncoeq  5920  dfdm2  6228  funcocnv2  6788
  Copyright terms: Public domain W3C validator