Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmcoeq | Structured version Visualization version GIF version |
Description: Domain of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
dmcoeq | ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3974 | . 2 ⊢ (dom 𝐴 = ran 𝐵 → ran 𝐵 ⊆ dom 𝐴) | |
2 | dmcosseq 5871 | . 2 ⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 dom cdm 5580 ran crn 5581 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 |
This theorem is referenced by: rncoeq 5873 dfdm2 6173 funcocnv2 6724 |
Copyright terms: Public domain | W3C validator |