| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcoeq | Structured version Visualization version GIF version | ||
| Description: Domain of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| dmcoeq | ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3995 | . 2 ⊢ (dom 𝐴 = ran 𝐵 → ran 𝐵 ⊆ dom 𝐴) | |
| 2 | dmcosseq 5919 | . 2 ⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3903 dom cdm 5619 ran crn 5620 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: rncoeq 5923 dfdm2 6229 funcocnv2 6789 |
| Copyright terms: Public domain | W3C validator |