Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmcoeq | Structured version Visualization version GIF version |
Description: Domain of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
dmcoeq | ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3983 | . 2 ⊢ (dom 𝐴 = ran 𝐵 → ran 𝐵 ⊆ dom 𝐴) | |
2 | dmcosseq 5880 | . 2 ⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊆ wss 3892 dom cdm 5589 ran crn 5590 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 |
This theorem is referenced by: rncoeq 5882 dfdm2 6182 funcocnv2 6737 |
Copyright terms: Public domain | W3C validator |